Jason S. Prentice

Learn More
We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic variability of spikes from each unit. As MEAs grow larger, it is important to find spike-identification methods that are(More)
In retina and in cortical slice the collective response of spiking neural populations is well described by "maximum-entropy" models in which only pairs of neurons interact. We asked, how should such interactions be organized to maximize the amount of information represented in population responses? To this end, we extended the linear-nonlinear-Poisson model(More)
Grid cells in the brain respond when an animal occupies a periodic lattice of 'grid fields' during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to(More)
Across the nervous system, certain population spiking patterns are observed far more frequently than others. A hypothesis about this structure is that these collective activity patterns function as population codewords-collective modes-carrying information distinct from that of any single cell. We investigate this phenomenon in recordings of ∼150 retinal(More)
An appealing new principle for neural population codes is that correlations among neurons organize neural activity patterns into a discrete set of clusters, which can each be viewed as a noise-robust population codeword. Previous studies assumed that these codewords corresponded geometrically with local peaks in the probability landscape of neural(More)
Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion(More)
Multi-electrode array technology provides an efficient means of recording from many neurons. However, as arrays become larger, a greater computational burden falls on the spike-sorting algorithm. We have developed a new method, that scales linearly with array size, for sorting multi-electrode signals from retinal ganglion cells. We believe that our(More)
In most areas of the brain, information is encoded in the correlated activity of large populations of neurons. We ask how neural responses should be coupled to best represent information about different ensembles of correlated stimuli. Three classical population coding strategies are independence, decorrelation and error correction. Here we demonstrate that(More)
1 Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA 2 Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA 4 Laboratoire de Physique Théorique, École Normale Supérieure, 75005 Paris, France 5 Princeton Neuroscience(More)
The visual system is challenged with extracting and representing behaviorally relevant information contained in natural inputs of great complexity and detail. This task begins in the sensory periphery: retinal receptive fields and circuits are matched to the first and second-order statistical structure of natural inputs. This matching enables the retina to(More)
  • 1