Jason R. McCarthy

Learn More
Magnetic nanoparticles have become important tools for the imaging of prevalent diseases, such as cancer, atherosclerosis, diabetes, and others. While first generation nanoparticles were fairly nonspecific, newer generations have been targeted to specific cell types and molecular targets via affinity ligands. Commonly, these ligands emerge from phage or(More)
Magnetic nanoparticles and their magnetofluorescent analogues have become important tools for in vivo imaging using magnetic resonance imaging and fluorescent optical methods. A number of monodisperse magnetic nanoparticle preparations have been developed over the last decade for angiogenesis imaging, cancer staging, tracking of immune cells(More)
We report the production of poly(lactic-co-glycolic acid) nanoparticles that encapsulate the photosensitizer meso-tetraphenylporpholactol. These nanoparticles are stable and nonphototoxic upon systemic administration. Upon cellular internalization, the photosensitizer is released from the nanoparticle and becomes highly phototoxic. Irradiation with visible(More)
Advancing understanding of human coronary artery disease requires new methods that can be used in patients for studying atherosclerotic plaque microstructure in relation to the molecular mechanisms that underlie its initiation, progression and clinical complications, including myocardial infarction and sudden cardiac death. Here we report a dual-modality(More)
Nanotechnology has enabled a renaissance in the diagnosis of cancers. This is due, in part to the ability to develop agents bearing multiple functionalities, including those utilized for targeting, imaging, and therapy, allowing for the tailoring of the properties of the nanomaterials. Whereas many nanomaterials exhibit localization to diseased tissues via(More)
The development of agents for the simultaneous detection and treatment of disease has recently gained significant attention. These multifunctional theranostic agents posses a number of advantages over their monofunctional counterparts, as they potentially allow for the concomitant determination of agent localization, release, and efficacy. Whereas the(More)
The current lack of suitable probes has limited the in vivo imaging of reactive oxygen/nitrogen species (ROS/RNS). ROS/RNS are often generated by ischemia-induced inflammation; defining the extent of tissue involvement or ROS/RNS-related damage would have a significant clinical impact. We present the preparation and demonstration of a fluorogenic sensor for(More)
OBJECTIVES The goal of this study was to develop and validate a new fibrin-targeted imaging agent that enables high-resolution near-infrared fluorescence (NIRF) imaging of deep vein thrombosis (DVT). BACKGROUND NIRF imaging of fibrin could enable highly sensitive and noninvasive molecular imaging of thrombosis syndromes in vivo. METHODS A(More)
Next-generation photodynamic therapy agents based upon the conjugation of multiple photosensitizers to a targeting backbone will allow for more efficacious light-based therapies. To this end, we have developed glucose-modified chlorins and bacteriochlorins featuring a reactive carboxylic acid linker for conjugation to targeting moieties. The(More)
OBJECTIVE To investigate the effects of pioglitazone (PIO), a peroxisome proliferator-activated receptor γ agonist, on plaque matrix metalloproteinase (MMP) and macrophage (Mac) responses in vivo in a molecular imaging study. METHODS AND RESULTS In vitro, PIO suppressed MMP-9 protein expression in murine peritoneal Macs (P<0.05). To assess PIO's effects(More)