Jason P. Sexton

Learn More
Species range limits involve many aspects of evolution and ecology, from species distribution and abundance to the evolution of niches. Theory suggests myriad processes by which range limits arise, including competitive exclusion, Allee effects, and gene swamping; however, most models remain empirically untested. Range limits are correlated with a number of(More)
Two major mechanisms have been proposed to explain the ability of introduced populations to colonize over large habitat gradients, despite significant population bottlenecks during introduction: (1) Broad environmental tolerance—successful invaders possess life history traits that confer superior colonizing ability and/or phenotypic plasticity, allowing(More)
Gene flow among populations can enhance local adaptation if it introduces new genetic variants available for selection, but strong gene flow can also stall adaptation by swamping locally beneficial genes. These outcomes can depend on population size, genetic variation, and the environmental context. Gene flow patterns may align with geographic distance(More)
The range of resources that a species uses (i.e. its niche breadth) might determine the geographical area it can occupy, but consensus on whether a niche breadth-range size relationship generally exists among species has been slow to emerge. The validity of this hypothesis is a key question in ecology in that it proposes a mechanism for commonness and(More)
According to theory, gene flow to marginal populations may stall or aid adaptation at range limits by swamping peripheral populations with maladaptive gene flow or by enhancing genetic variability and reducing inbreeding depression, respectively. We tested these contrasting predictions by manipulating patterns of gene flow of the annual plant, Mimulus(More)
Complete 18S rDNA sequences were determined for 25 strains representing five genera of the Eustigmatophyceae, including re-examination of three strains with previously published sequences. Parsimony analysis of these and 44 published sequences for other heterokont chromophytes (unalignable sites removed) revealed that the Eustigmatophyceae were a(More)
Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey(More)
Niche partitioning among close relatives may reflect trade-offs underlying species divergence and coexistence (e.g., between stress tolerance and competitive ability). We quantified the effects of habitat and congeneric species interactions on fitness for two closely related herbaceous plant species, Mimulus guttatus and Mimulus laciniatus, in three common(More)
Closely related species (e.g., sister taxa) often occupy very different ecological niches and can exhibit large differences in geographic distributions despite their shared evolutionary history. Budding speciation is one process that may partially explain how differences in niche and distribution characteristics may rapidly evolve. Budding speciation is the(More)
Alpine plants often occupy diverse habitats within a similar elevation range, but most research on local adaptation in these plants has focused on elevation gradients. In testing for habitat-related local adaptation, local effects on seed quality and initial plant growth should be considered in designs that encompass multiple populations and habitats. We(More)