Learn More
α-SrCr(2)O(4) has a triangular planar lattice of d(3) Cr(3+) made from edge sharing CrO(6) octahedra; the plane shows a very small orthorhombic distortion from hexagonal symmetry. With a Weiss temperature of - 596 K and a three-dimensional magnetic ordering temperature of 43 K, the magnetic system is quasi-two-dimensional and frustrated. Neutron powder(More)
SrFe0.75Mo0.25O3-δ has been recently discovered as an extremely efficient electrode for intermediate temperature solid oxide fuel cells (IT-SOFCs). We have performed structural and magnetic studies to fully characterize this multifunctional material. We have observed by powder neutron diffraction (PND) and transmission electron microscopy (TEM) that its(More)
Above-room-temperature polar magnets are of interest due to their practical applications in spintronics. Here we present a strategy to design high-temperature polar magnetic oxides in the corundum-derived A2BB'O6 family, exemplified by the non-centrosymmetric (R3) Ni3TeO6-type Mn(2+)2Fe(3+)Mo(5+)O6, which shows strong ferrimagnetic ordering with TC = 337 K(More)
We characterize experimentally and theoretically the promising new solid oxide fuel cell electrode material Sr(2)Fe(1.5)Mo(0.5)O(6-δ) (SFMO). Rietveld refinement of powder neutron diffraction data has determined that the crystal structure of this material is distorted from the ideal cubic simple perovskite, instead belonging to the orthorhombic space group(More)
We have expanded the double perovskite family of materials with the unusual combination of layered order in the A sublattice and rock salt order over the B sublattice to compounds NaLaFeWO6 and NaNdFeWO6. The materials have been synthesized and studied by powder X-ray diffraction, neutron diffraction, electron diffraction, magnetic measurements, X-ray(More)
Pb2MnTeO6, a new double perovskite, was synthesized. Its crystal structure was determined by synchrotron X-ray and powder neutron diffraction. Pb2MnTeO6 is monoclinic (I2/m) at room temperature with a regular arrangement of all the cations in their polyhedra. However, when the temperature is lowered to ∼120 K it undergoes a phase transition from I2/m to(More)
Misassignment of neutron position (ghosting) produces artifacts which have been observed in wavelength-shifting (WLS) fiber detectors developed for time-of-flight (TOF) neutron powder diffraction. In position-sensitive detectors (PSDs) with WLS fiber encoding, thermal and cold neutrons interact with a monolithic (6)LiF/ZnS:Ag scintillator screen, and(More)
  • 1