Jason M. Thomas

  • Citations Per Year
Learn More
Pseudomonas pseudoflava and palmitic acid were used to investigate the role of bacterial colonization in the degradation of waterinsoluble organic compounds. Mineralization was measured by trapping the14CO2 produced from the labeled substrate, and colonization of the surface of the solid organic chemical was determined by epifluorescence microscopy. In a(More)
Recent crystallographic and computational studies have provided fresh insights into the catalytic mechanism of the RNA-cleaving hammerhead ribozyme. Based on these findings, specific ribozyme functional groups have been hypothesized to act directly as the general acid and base catalysts, although the catalytic role of divalent metal cations (M(2+)) remains(More)
Recent structural and computational studies have shed new light on the catalytic mechanism and active site structure of the RNA cleaving hammerhead ribozyme. Consequently, specific ribozyme functional groups have been hypothesized to be directly involved in general/acid base catalysis. In order to test this hypothesis, we have developed an affinity label to(More)
This work addresses the binding, cleavage and dissociation rates for the substrate and products of a synthetic RNaseA mimic that was combinatorially selected using chemically modified nucleoside triphosphates. This trans-cleaving DNAzyme, 9(25)-11t, catalyzes sequence-specific ribophosphodiester hydrolysis in the total absence of a divalent metal cation,(More)
Inspired by recent interest in DNAzymes as transition metal ion sensors, a survey of the effects of various transition metals on the intramolecular cleavage rate of an imidazole modified, M(2+)-independent, self-cleaving "9(25)-11" DNA is reported. In particular, 9(25)-11 activity was strongly inhibited by Hg(2+)(K(d)(APP)= 110 +/- 9 nM). It is postulated(More)
A DNAzyme, synthetically modified with both primary amines and imidazoles, is found to act as a M2+ -independent AP lyase-endonuclease. In the course of the cleavage reaction, this DNAzyme forms a covalent Schiff base intermediate with an abasic site on a complementary oligodeoxyribonucleotide. This intermediate, which is inferred from NaCNBH3 trapping as(More)
There is mounting evidence that suggests that general acid/base catalysis is operative in the hairpin ribozyme, with analogy to the protein enzyme RNaseA. Nevertheless, the extent of general base catalysis as well as the identity of the specific chemical groups responsible remains the subject of some controversy. An affinity label has previously been used(More)
The protein enzyme ribonuclease A (RNaseA) cleaves RNA with catalytic perfection, although with little sequence specificity, by a divalent metal ion (M(2+))-independent mechanism in which a pair of imidazoles provides general acid and base catalysis, while a cationic amine provides electrostatic stabilization of the transition state. Synthetic imitation of(More)
Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via(More)
Aptamers have proven to be very useful as high-affinity and -specificity molecular recognition elements in analytical sensors of various forms. Herein, we describe a general process for creating an aptamer-based sensor that functions as an analyte-responsive, nano-sized, electronic switch. These sensors can provide an electrochemical readout, by switching(More)