Jason M Schenkel

Learn More
Differentiation and maintenance of recirculating effector memory CD8 T cells (T(EM)) depends on prolonged cognate Ag stimulation. Whether similar pathways of differentiation exist for recently identified tissue-resident effector memory T cells (T(RM)), which contribute to rapid local protection upon pathogen re-exposure, is unknown. Memory CD8αβ(+) T cells(More)
Memory CD8 T cells protect against intracellular pathogens by scanning host cell surfaces; thus, infection detection rates depend on memory cell number and distribution. Population analyses rely on cell isolation from whole organs, and interpretation is predicated on presumptions of near complete cell recovery. Paradigmatically, memory is parsed into(More)
Tissue-resident memory T (Trm) cells constitute a recently identified lymphocyte lineage that occupies tissues without recirculating. They provide a first response against infections reencountered at body surfaces, where they accelerate pathogen clearance. Because Trm cells are not present within peripheral blood, they have not yet been well characterized,(More)
CD8+ T cells eliminate intracellular infections through two contact-dependent effector functions: cytolysis and secretion of antiviral cytokines. Here we identify the following additional function for memory CD8+ T cells that persist at front-line sites of microbial exposure: to serve as local sensors of previously encountered antigens that precipitate(More)
Regulatory T cells (Treg cells) express members of the tumor-necrosis factor (TNF) receptor superfamily (TNFRSF), but the role of those receptors in the thymic development of Treg cells is undefined. We found here that Treg cell progenitors had high expression of the TNFRSF members GITR, OX40 and TNFR2. Expression of those receptors correlated directly with(More)
Blocking Programmed Death-1 (PD-1) can reinvigorate exhausted CD8 T cells (TEX) and improve control of chronic infections and cancer. However, whether blocking PD-1 can reprogram TEX into durable memory T cells (TMEM) is unclear. We found that reinvigoration of TEX in mice by PD-L1 blockade caused minimal memory development. After blockade, reinvigorated(More)
Th1 cells are critical for containment of Mycobacterium tuberculosis infection, but little else is known about the properties of protective CD4 T cell responses. In this study, we show that the pulmonary Th1 response against M. tuberculosis is composed of two populations that are either CXCR3(hi) and localize to lung parenchyma or are CX3CR1(hi)KLRG1(hi)(More)
Memory CD8+ T cell quantity and quality determine protective efficacy against reinfection. Heterologous prime boost vaccination minimizes contraction of anamnestic effectors and maximizes memory CD8+ T cell quantity but reportedly erodes proliferative potential and protective efficacy. This study exploited heterologous prime boost vaccination to discover(More)
Resident memory CD8 T cells (TRM) are a nonrecirculating subset positioned in nonlymphoid tissues to provide early responses to reinfection. Although TRM are associated with nonlymphoid tissues, we asked whether they populated secondary lymphoid organs (SLO). We show that a subset of virus-specific memory CD8 T cells in SLO exhibit phenotypic signatures(More)
Our current understanding of immunology was largely defined in laboratory mice, partly because they are inbred and genetically homogeneous, can be genetically manipulated, allow kinetic tissue analyses to be carried out from the onset of disease, and permit the use of tractable disease models. Comparably reductionist experiments are neither technically nor(More)