Learn More
Single molecule localization based super-resolution imaging techniques require repeated localization of many single emitters. We describe a method that uses the maximum likelihood estimator to localize multiple emitters simultaneously within a single, two-dimensional fitting sub-region, yielding an order of magnitude improvement in the tolerance of the(More)
Many cellular signaling processes are initiated by dimerization or oligomerization of membrane proteins. However, since the spatial scale of these interactions is below the diffraction limit of the light microscope, the dynamics of these interactions have been difficult to study on living cells. We have developed a novel high-speed hyperspectral microscope(More)
Localization of single molecules in microscopy images is a key step in quantitative single particle data analysis. Among them, single molecule based super-resolution optical microscopy techniques require high localization accuracy as well as computation of large data sets in the order of 10 5 single molecule detections to reconstruct a single image. We(More)
Podosomes are multimolecular mechanosensory assemblies that coordinate mesenchymal migration of tissue-resident dendritic cells. They have a protrusive actin core and an adhesive ring of integrins and adaptor proteins, such as talin and vinculin. We recently demonstrated that core actin oscillations correlate with intensity fluctuations of vinculin but not(More)
these microscopes to be used to study a wide range of physiological parameters in fi xed and living cells, tissue sections, and even live animals [1–4]. But it is the availability of 3D image analysis software which runs on low-cost personal computers that makes 3D and 4D image-based research practical. This review examines some of the software tools and(More)
Localization microscopy achieves nanoscale spatial resolution by iterative localization of sparsely activated molecules, which generally leads to a long acquisition time. By implementing advanced algorithms to treat overlapping point spread functions (PSFs), imaging of densely activated molecules can improve the limited temporal resolution, as has been well(More)
One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon(More)
Localization-based super-resolution microscopy (or called localization microscopy) rely on repeated imaging and localization of active molecules, and the spatial resolution enhancement of localization microscopy is built upon the sacrifice of its temporal resolution. Developing algorithms for high-density localization of active molecules is a promising(More)
  • 1