Learn More
The recent explosion in biological and other real-world network data has created the need for improved tools for large network analyses. In addition to well established global network properties, several new mathematical techniques for analyzing local structural properties of large networks have been developed. Small over-represented subgraphs, called(More)
Recent reports on direct reprogramming of cancer cells (iPCs) which results in reduced tumorigenic potential has attributed the importance of epigenetics in tumorigenesis, but lacked genome-wide analysis. Here we describe successful generation of iPCs from non-small cell lung cancer (NSCLC) cell lines. Following reprogramming, they resembled embryonic stem(More)
This dissertation is the result of the research and development of a power conditioning system for superconductive magnetic energy storage systems (SMES). The dominant challenge of this research was to develop a power conditioning system that can match slowly varying dc voltages and dc currents on the superconductive magnet side with the ac voltages and ac(More)
The boost power factor correction (PFC) circuit is a common circuit in power electronics. Through years of experience, many designers have optimized the design of these circuits for particular applications. In this study, a new design procedure is presented that guarantees optimal results for any application. The algorithm used incorporates the principles(More)
The inefficiency of generating induced pluripotent somatic cells (iPS) engendered two contending models, namely the Stochastic model and Elite model. Although the former is more favorable to explain the inherent inefficiencies, it may be fallible to extrapolate the same working model to reprogramming of cancer cells. Indeed, tumor cells are known to be(More)
Power conversion system design issues are expanding their role in information technology equipment design philosophies. These issues include not only improving power conversion efficiency, but also increased concerns regarding the cost and complexity of the power conversion design techniques utilized to satisfy the host system's total performance(More)
Power electronics building blocks (PEBBs) are standardized building blocks used to integrate power electronics systems. The PEBB approach can achieve low cost, high redundancy, high reliability, high flexibility and easy maintenance for large-scale power electronics systems. This thesis presents the implementation of a 100kW PEBB-based soft-switched bus(More)
This paper reports the status and recent progress in development of a 100kW variable bi-directional DC-DC converter with input voltage ranging from 200 to 300Vdc, output voltage ranging from 300 to 600Vdc, a total efficiency > 95%, a power density > 4kW/liter, and a specific power density > 4kW/kg with a high coolant temperature of > 90C. Multiple(More)