Jason Lai

Learn More
BACKGROUND The recent explosion in biological and other real-world network data has created the need for improved tools for large network analyses. In addition to well established global network properties, several new mathematical techniques for analyzing local structural properties of large networks have been developed. Small over-represented subgraphs,(More)
Recent reports on direct reprogramming of cancer cells (iPCs) which results in reduced tumorigenic potential has attributed the importance of epigenetics in tumorigenesis, but lacked genome-wide analysis. Here we describe successful generation of iPCs from non-small cell lung cancer (NSCLC) cell lines. Following reprogramming, they resembled embryonic stem(More)
Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs--including GCaMP3, GCaMP5 and GCaMP6--can be(More)
Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK(More)
The inefficiency of generating induced pluripotent somatic cells (iPS) engendered two contending models, namely the Stochastic model and Elite model. Although the former is more favorable to explain the inherent inefficiencies, it may be fallible to extrapolate the same working model to reprogramming of cancer cells. Indeed, tumor cells are known to be(More)
  • 1