Learn More
Current multi-scale computational models of ventricular electromechanics describe the full process of cardiac contraction on both the micro- and macro- scales including: the depolarization of cardiac cells, the release of calcium from intracellular stores, tension generation by cardiac myofilaments, and mechanical contraction of the whole heart. Such models(More)
Cardiac resynchronization therapy (CRT) is an established clinical treatment modality that aims to recoordinate contraction of the heart in dyssynchrous heart failure (DHF) patients. Although CRT reduces morbidity and mortality, a significant percentage of CRT patients fail to respond to the therapy, reflecting an insufficient understanding of the(More)
BACKGROUND After near-defibrillation threshold (DFT) shocks from an implantable cardioverter-defibrillator (ICD), the first postshock activation that leads to defibrillation failure arises focally after an isoelectric window (IW). The mechanisms underlying the IW remain incompletely understood. OBJECTIVE The goal of this study was to provide mechanistic(More)
Left ventricular-assist devices (LVADs) are used to supply blood to the body of patients with heart failure. Pressure unloading is greater for counter-pulsating LVADs than for continuous LVADs. However, several clinical trials have demonstrated that myocardial recovery is similar for both types of LVAD. This study examined the contractile energy consumption(More)
This article reviews the latest developments in computational cardiology. It focuses on the contribution of cardiac modelling to the development of new therapies as well as the advancement of existing ones for cardiac arrhythmias and pump dysfunction. Reviewed are cardiac modelling efforts aimed at advancing and optimizing existent therapies for cardiac(More)
Computational modeling has traditionally played an important role in dissecting the mechanisms for cardiac dysfunction. Ventricular electromechanical models, likely the most sophisticated virtual organs to date, integrate detailed information across the spatial scales of cardiac electrophysiology and mechanics and are capable of capturing the emergent(More)
BACKGROUND Cardiac resynchronization therapy (CRT) has been demonstrated to lead to restoration of oxygen consumption homogeneity throughout the left ventricle (LV), which is important for long-term reverse remodeling of the ventricles. However, research has focused exclusively on identifying the LV pacing sites that led to acute hemodynamic improvements.(More)
A three-dimensional (3D) finite element electromechanical model of the heart is employed in simulations of seismocardiograms (SCGs). To simulate SCGs, a previously developed 3D model of ventricular contraction is extended by adding the mechanical interaction of the heart with the chest and internal organs. The proposed model reproduces the major peaks of(More)
Comprehensive understanding of the ventricular response to shocks is the approach most likely to succeed in reducing defibrillation threshold. We propose a new theory of shock-induced arrhythmogenesis that unifies all known aspects of the response of the heart to monophasic (MS) and biphasic (BS) shocks. The central hypothesis is that submerged "tunnel"(More)
One of the most important components of mechanoelectric coupling is stretch-activated channels, sarcolemmal channels that open upon mechanical stimuli. Uncovering the mechanisms by which stretch-activated channels contribute to ventricular arrhythmogenesis under a variety of pathologic conditions is hampered by the lack of experimental methodologies that(More)