Learn More
Despite the impressive complexity and processing power of the human brain, it is severely capacity limited. Behavioral research has highlighted three major bottlenecks of information processing that can cripple our ability to consciously perceive, hold in mind, and act upon the visual world, illustrated by the attentional blink (AB), visual short-term(More)
When humans attempt to perform two tasks at once, execution of the first task usually leads to postponement of the second one. This task delay is thought to result from a bottleneck occurring at a central, amodal stage of information processing that precludes two response selection or decision-making operations from being concurrently executed. Using(More)
BACKGROUND The speed and accuracy of decision-making have a well-known trading relationship: hasty decisions are more prone to errors while careful, accurate judgments take more time. Despite the pervasiveness of this speed-accuracy trade-off (SAT) in decision-making, its neural basis is still unknown. METHODOLOGY/PRINCIPAL FINDINGS Using functional(More)
McCormick (1997) concluded that peripheral cues presented below a threshold of awareness could nevertheless attract attention because they facilitated target processing near the cue shortly after its presentation. Yet, whereas an exogenous shift of attention typically exhibits a biphasic pattern (initial facilitation followed by inhibition of return [IOR]),(More)
Spatial responding is influenced by the degree of correspondence between the stimulus-response (S-R) code activated by the target's task-irrelevant location and the S-R code activated by the target's non-spatial, task-relevant feature. A generally accepted explanation of this "Simon effect," named after its discoverer, is that there is a natural tendency to(More)
Inhibition of return (IOR) refers to slowed responding to targets at a location previously occupied by an irrelevant cue. Here we explore the interaction between stimulus-response (S-R) probability and IOR effects using go/no-go (Experiment 1) and two-choice discrimination tasks (Experiment 2). In both experiments, the IOR effect was larger for the likely(More)
OBJECTIVES Impaired response inhibition underlies symptoms and altered functioning in patients with bipolar disorders (BD). The interpretation of fMRI studies requires an accurate estimation of neurocognitive performance, for which individual studies are typically underpowered. Thus, we performed the first combined meta-analysis of fMRI activations and(More)
Previous research has reported that the Simon effect (a type of stimulus-response [S-R] compatibility effect) and the inhibition of return effect (IOR; a late cuing effect) do not interact. In this brief report, we analyzed published and unpublished experiments that have examined these effects and found that IOR actually increases the Simon effect. This is(More)
Inhibition of return (IOR) refers to a mechanism that results in a performance disadvantage typically observed when targets are presented at a location once occupied by a cue. Although the time course of the phenomenon--from the cue to the target--has been well studied, the time course of the effect--from target to response--is unknown. In 2 experiments,(More)