Jason I. Herschkowitz

Learn More
In breast cancer, gene expression analyses have defined five tumor subtypes (luminal A, luminal B, HER2-enriched, basal-like and claudin-low), each of which has unique biologic and prognostic features. Here, we comprehensively characterize the recently identified claudin-low tumor subtype. The clinical, pathological and biological features of claudin-low(More)
Although numerous mouse models of breast carcinomas have been developed, we do not know the extent to which any faithfully represent clinically significant human phenotypes. To address this need, we characterized mammary tumor gene expression profiles from 13 different murine models using DNA microarrays and compared the resulting data to those from human(More)
The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-beta1. Each of these(More)
Some breast cancers have been shown to contain a small fraction of cells characterized by CD44(+)/CD24(-/low) cell-surface antigen profile that have high tumor-initiating potential. In addition, breast cancer cells propagated in vitro as mammospheres (MSs) have also been shown to be enriched for cells capable of self-renewal. In this study, we have defined(More)
The discovery of RNAi has revolutionized loss-of-function genetic studies in mammalian systems. However, significant challenges still remain to fully exploit RNAi for mammalian genetics. For instance, genetic screens and in vivo studies could be broadly improved by methods that allow inducible and uniform gene expression control. To achieve this, we built(More)
Breast cancers can be classified using whole genome expression into distinct subtypes that show differences in prognosis. One of these groups, the basal-like subtype, is poorly differentiated, highly metastatic, genomically unstable, and contains specific genetic alterations such as the loss of tumour protein 53 (TP53). The loss of the retinoblastoma tumour(More)
The claudin-low subtype is a recently identified rare molecular subtype of human breast cancer that expresses low levels of tight and adherens junction genes and shows high expression of epithelial-to-mesenchymal transition (EMT) genes. These tumors are enriched in gene expression signatures derived from human tumor-initiating cells (TICs) and human mammary(More)
Triple-negative breast cancer (TNBC) is a heterogeneous disease that includes Basal-like and Claudin-low tumors. The Claudin-low tumors are enriched for features associated with epithelial-to-mesenchymal transition (EMT) and possibly for tumor initiating cells. Primary TNBCs respond relatively well to conventional chemotherapy; however, metastatic disease(More)
Human breast cancer is a heterogeneous disease consisting of multiple molecular subtypes. Genetically engineered mouse models are a useful resource for studying mammary cancers in vivo under genetically controlled and immune competent conditions. Identifying murine models with conserved human tumor features will facilitate etiology determinations, highlight(More)
To better understand the cellular origin of breast cancer, we developed a mouse model that recapitulates expression of the ETV6-NTRK3 (EN) fusion oncoprotein, the product of the t(12;15)(p13;q25) translocation characteristic of human secretory breast carcinoma. Activation of EN expression in mammary tissues by Wap-Cre leads to fully penetrant, multifocal(More)