Learn More
One of the greatest challenges facing human geneticists is the identification and characterization of susceptibility genes for common complex multifactorial human diseases. This challenge is partly due to the limitations of parametric-statistical methods for detection of gene effects that are dependent solely or partially on interactions with other genes(More)
MOTIVATION Polymorphisms in human genes are being described in remarkable numbers. Determining which polymorphisms and which environmental factors are associated with common, complex diseases has become a daunting task. This is partly because the effect of any single genetic variation will likely be dependent on other genetic variations (gene-gene(More)
Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We(More)
Admixture mapping (also known as "mapping by admixture linkage disequilibrium," or MALD) provides a way of localizing genes that cause disease, in admixed ethnic groups such as African Americans, with approximately 100 times fewer markers than are required for whole-genome haplotype scans. However, it has not been possible to perform powerful scans with(More)
The identification and characterization of genes that influence the risk of common, complex multifactorial diseases, primarily through interactions with other genes and other environmental factors, remains a statistical and computational challenge in genetic epidemiology. This challenge is partly due to the limitations of parametric statistical methods for(More)
Detecting, characterizing, and interpreting gene-gene interactions or epistasis in studies of human disease susceptibility is both a mathematical and a computational challenge. To address this problem, we have previously developed a multifactor dimensionality reduction (MDR) method for collapsing high-dimensional genetic data into a single dimension (i.e.(More)
Although recent genome-wide studies have provided valuable insights into the genetic basis of human disease, they have explained relatively little of the heritability of most complex traits, and the variants identified through these studies have small effect sizes. This has led to the important and hotly debated issue of where the 'missing heritability' of(More)
Genome-wide association studies (GWAS) have evolved over the last ten years into a powerful tool for investigating the genetic architecture of human disease. In this work, we review the key concepts underlying GWAS, including the architecture of common diseases, the structure of common human genetic variation, technologies for capturing genetic information,(More)
BACKGROUND Appropriate definition of neural network architecture prior to data analysis is crucial for successful data mining. This can be challenging when the underlying model of the data is unknown. The goal of this study was to determine whether optimizing neural network architecture using genetic programming as a machine learning strategy would improve(More)
Autism is a neurodevelopmental disorder of unclear etiology. The consistent finding of platelet hyperserotonemia in a proportion of patients and its heritability within affected families suggest that genes involved in the serotonin system play a role in this disorder. The role in autism etiology of seven candidate genes in the serotonin metabolic and(More)