Learn More
Adaptive immunity depends on T-cell exit from the thymus and T and B cells travelling between secondary lymphoid organs to survey for antigens. After activation in lymphoid organs, T cells must again return to circulation to reach sites of infection; however, the mechanisms regulating lymphoid organ exit are unknown. An immunosuppressant drug, FTY720,(More)
Lymphocytes require sphingosine-1-phosphate (S1P) receptor-1 to exit lymphoid organs, but the source(s) of extracellular S1P and whether S1P directly promotes egress are unknown. By using mice in which the two kinases that generate S1P were conditionally ablated, we find that plasma S1P is mainly hematopoietic in origin, with erythrocytes a major(More)
Lymphocyte egress from the thymus and from peripheral lymphoid organs depends on sphingosine 1-phosphate (S1P) receptor-1 and is thought to occur in response to circulatory S1P. However, the existence of an S1P gradient between lymphoid organs and blood or lymph has not been established. To further define egress requirements, we addressed why treatment with(More)
Naive lymphocytes continually enter and exit lymphoid organs in a recirculation process that is essential for immune surveillance. During immune responses, the egress process can be shut down transiently. When this occurs locally it increases lymphocyte numbers in the responding lymphoid organ; when it occurs systemically it can lead to immunosuppression as(More)
The germinal center (GC) is an important site for the generation and selection of B cells bearing high-affinity antibodies, yet GC cell migration and interaction dynamics have not been directly observed. Using two-photon microscopy of mouse lymph nodes, we revealed that GC B cells are highly motile and extend long cell processes. They transited between GC(More)
Sphingosine-1-phosphate receptor 1 (S1P(1)) was recently shown to be required for lymphocyte egress from lymphoid organs. Here we have examined the relationship between S1P(1) abundance on the cell and egress efficiency. Using an integrin neutralization approach to separate the processes of entry and exit, we show that pertussis toxin treatment reduces(More)
The mechanisms that control localization of marginal zone (MZ) B cells are poorly understood. Here we show that MZ B cells express elevated levels of the integrins LFA-1 (alphaLbeta2) and alpha4beta1 and that they bind to the ligands ICAM-1 and VCAM-1. These ligands are expressed within the MZ in a lymphotoxin-dependent manner. Combined inhibition of LFA-1(More)
Lymphoid follicles are B-cell-rich compartments of lymphoid organs that function as sites of B-cell antigen encounter and differentiation. CXC chemokine receptor-5 (CXCR5) is required for B-cell migration to splenic follicles, but the requirements for homing to B-cell areas in lymph nodes remain to be defined. Here we show that lymph nodes contain two types(More)
Secondary lymphoid organs (spleen, lymph nodes and Peyer's patches) are divided into compartments, such as B-cell zones (follicles) and T-cell zones, which provide specialized environments for specific steps of the immune response. Migration of lymphocyte subsets into these compartments is essential for normal immune function, yet the molecular cues guiding(More)