Learn More
Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the(More)
UNLABELLED For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient(More)
In the current study we use electroencephalography (EEG) to detect heard music from the brain signal, hypothesizing that the time structure in music makes it especially suitable for decoding perception from EEG signals. While excluding music with vocals, we classified the perception of seven different musical fragments of about three seconds, both(More)
OBJECTIVE The aim of this paper was to increase the information transfer in brain-computer interfaces (BCI). Therefore, a multi-signature BCI was developed and investigated. Stimuli were designed to simultaneously evoke transient somatosensory event-related potentials (ERPs) and steady-state somatosensory potentials (SSSEPs) and the ERPs and SSSEPs in(More)
From an information-theoretic perspective, a noisy transmission system such as a visual Brain-Computer Interface (BCI) speller could benefit from the use of error-correcting codes. However, optimizing the code solely according to the maximal minimum-Hamming-distance criterion tends to lead to an overall increase in target frequency of target stimuli, and(More)
A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Traditional approaches to BCIs require the user to train for weeks or even months to learn to control the BCI. In contrast, BCIs based on machine learning only require a calibration session of less than(More)
The current work investigates the brain activation shared between perception and imagery of music as measured with electroencephalography (EEG). Meta-analyses of four separate EEG experiments are presented, each focusing on perception and imagination of musical sound, with differing levels of stimulus complexity. Imagination and perception of simple(More)
Combining electrophysiological and hemodynamic features is a novel approach for improving current performance of brain switches based on sensorimotor rhythms (SMR). This study was conducted with a dual purpose: to test the feasibility of using a combined electroencephalogram/functional near-infrared spectroscopy (EEG-fNIRS) SMR-based brain switch in(More)
Semantic priming is usually studied by examining ERPs over many trials and subjects. This article aims at detecting semantic priming at the single-trial level. By using machine learning techniques it is possible to analyse and classify short traces of brain activity, which could, for example, be used to build a Brain Computer Interface (BCI). This article(More)
Non-stationary signals are ubiquitous in electroencephalogram (EEG) signals and pose a problem for robust application of brain-computer interfaces (BCIs). These non-stationarities can be caused by changes in neural background activity. We present a dynamic spatial filter based on time local whitening that significantly reduces the detrimental influence of(More)