Learn More
We reveal the presence of refractory and overlap effects in the event-related potentials in visual P300 speller datasets, and we show their negative impact on the performance of the system. This finding has important implications for how to encode the letters that can be selected for communication. However, we show that such effects are dependent on(More)
UNLABELLED For quantitative PET information, correction of tissue photon attenuation is mandatory. Generally in conventional PET, the attenuation map is obtained from a transmission scan, which uses a rotating radionuclide source, or from the CT scan in a combined PET/CT scanner. In the case of PET/MRI scanners currently under development, insufficient(More)
Brain-computer interfaces (BCIs) have attracted much attention recently, triggered by new scientific progress in understanding brain function and by impressive applications. The aim of this review is to give an overview of the various steps in the BCI cycle, i.e., the loop from the measurement of brain activity, classification of data, feedback to the(More)
In the current study we use electroencephalography (EEG) to detect heard music from the brain signal, hypothesizing that the time structure in music makes it especially suitable for decoding perception from EEG signals. While excluding music with vocals, we classified the perception of seven different musical fragments of about three seconds, both(More)
OBJECTIVE The aim of this paper was to increase the information transfer in brain-computer interfaces (BCI). Therefore, a multi-signature BCI was developed and investigated. Stimuli were designed to simultaneously evoke transient somatosensory event-related potentials (ERPs) and steady-state somatosensory potentials (SSSEPs) and the ERPs and SSSEPs in(More)
From an information-theoretic perspective, a noisy transmission system such as a visual Brain-Computer Interface (BCI) speller could benefit from the use of error-correcting codes. However, optimizing the code solely according to the maximal minimum-Hamming-distance criterion tends to lead to an overall increase in target frequency of target stimuli, and(More)
The current work investigates the brain activation shared between perception and imagery of music as measured with electroencephalography (EEG). Meta-analyses of four separate EEG experiments are presented, each focusing on perception and imagination of musical sound, with differing levels of stimulus complexity. Imagination and perception of simple(More)
A brain-computer interface (BCI) enables direct communication from the brain to devices, bypassing the traditional pathway of peripheral nerves and muscles. Traditional approaches to BCIs require the user to train for weeks or even months to learn to control the BCI. In contrast, BCIs based on machine learning only require a calibration session of less than(More)
We present a graphical model framework for decoding in the visual ERP-based speller system. The proposed framework allows researchers to build generative models from which the decoding rules are obtained in a straightforward manner. We suggest two models for generating brain signals conditioned on the stimulus events. Both models incorporate letter(More)