Jason D. Sonnek

Learn More
Virtualization is being widely used in large-scale computing environments, such as clouds, data centers, and grids, to provide application portability and facilitate resource multiplexing while retaining application isolation. In many existing virtualized platforms, it has been found that the network bandwidth often becomes the bottleneck resource, causing(More)
This paper addresses the inherent unreliability and instability of worker nodes in large-scale donation-based distributed infrastructures such as peer-to-peer and grid systems. We present adaptive scheduling techniques that can mitigate this uncertainty and significantly outperform current approaches. In this work, we consider nodes that execute tasks via(More)
Large-scale donation-based distributed infrastructures need to cope with the inherent unreliability of participant nodes. A widely-used work scheduling technique in such environments is to redundantly schedule the out sourced computations to a number of nodes. We present the design and implementation of RIDGE, a reliability aware system which uses a node's(More)
This paper presents a design and analysis of scheduling techniques to cope with the inherent unreliability and instability of worker nodes in large-scale donation-based distributed infrastructures such as P2P and Grid systems. In particular, we focus on nodes that execute tasks via donated computational resources and may behave erratically or maliciously.(More)
Reputation systems have been a hot topic in the peer-to-peer community for several years. In a services-oriented distributed computing environment like the Grid, reputation systems can be utilized by clients to select between competing service providers. In this paper, we selected several existing reputation algorithms and adapted them to the problem of(More)
  • 1