Jason C Young

Learn More
The role of cytosolic factors in protein targeting to mitochondria is poorly understood. Here, we show that in mammals, the cytosolic chaperones Hsp90 and Hsp70 dock onto a specialized TPR domain in the import receptor Tom70 at the outer mitochondrial membrane. This interaction serves to deliver a set of preproteins to the receptor for subsequent membrane(More)
Cells are faced with the task of folding thousands of different polypeptides into a wide range of conformations. For many proteins, the folding process requires the action of molecular chaperones. In the cytosol of prokaryotic and eukaryotic cells, molecular chaperones of different structural classes form a network of pathways that can handle substrate(More)
Therapeutic efforts to restore biosynthetic processing of the cystic fibrosis transmembrane conductance regulator lacking the F508 residue (DeltaF508CFTR) are hampered by ubiquitin-dependent lysosomal degradation of nonnative, rescued DeltaF508CFTR from the plasma membrane. Here, functional small interfering RNA screens revealed the contribution of(More)
HspBP1 belongs to a family of eukaryotic proteins recently identified as nucleotide exchange factors for Hsp70. We show that the S. cerevisiae ortholog of HspBP1, Fes1p, is required for efficient protein folding in the cytosol at 37 degrees C. The crystal structure of HspBP1, alone and complexed with part of the Hsp70 ATPase domain, reveals a mechanism for(More)
The molecular chaperone hsp90 in the eukaryotic cytosol interacts with a variety of protein cofactors. Several of these cofactors have protein domains containing tetratricopeptide repeat (TPR) motifs, which mediate binding to hsp90. Using a yeast two-hybrid screen, the 12-kDa C-terminal domain of human hsp90alpha (C90) was found to mediate the interaction(More)
Tail-anchored (TA) proteins provide an ideal model for studying post-translational integration at the endoplasmic reticulum (ER) of eukaryotes. There are multiple pathways for delivering TA proteins from the cytosol to the ER membrane yet, whereas an ATP-dependent route predominates, none of the cytosolic components involved had been identified. In this(More)
ABSTRACT To investigate the interaction between two major ear-rotting pathogens, maize ears were inoculated with either Fusarium graminearum, F. moniliforme, or an equal mixture of the two. Silk and kernel tissues were periodically harvested throughout the growing season so that a time course of the experimental variables (disease severity, ergosterol(More)
The molecular chaperone Hsp90 binds and hydrolyses ATP, but how this ATPase activity regulates the interaction of Hsp90 with a polypeptide substrate is not yet understood. Using the glucocorticoid receptor ligand binding domain as a substrate, we show that dissociation of Hsp90 from bound polypeptide depends on the Hsp90 ATPase and is blocked by(More)
Hsp90 is an abundant and constitutively expressed stress protein and molecular chaperone. Here we dissected human hsp90 into three major domains to identify the putative chaperone site at which hsp90 binds unfolded polypeptide. Surprisingly, both the N-terminal and the C-terminal domain of hsp90 prevent the aggregation of denatured polypeptides. The(More)