Jason A. Tolomeo

Learn More
The mechanical properties of the mammalian organ of Corti determine its sensitivity to sound frequency and intensity, and the structure of supporting cells changes progressively with frequency along the cochlea. From the apex (low frequency) to the base (high frequency) of the guinea pig cochlea inner pillar cells decrease in length incrementally from 75-55(More)
The mammalian outer hair cell has been shown to possess significant coupling between mechanical and electrical properties. This electromotile property may play a key role in cochlear tuning. In order to characterize quantitatively the electrical and mechanical behavior, the cell wall is modeled as a thin linear elastic piezoelectric material. Experimental(More)
The deformation response of a guinea pig outer hair cell is modeled for mechanical and electrical stimulation up to 25 kHz. The analysis uses a Fourier series technique for a finite length cell surrounded internally and externally by a much larger continuum of viscous fluid. The analytical solution predicts that outer hair cell length changes occur due to(More)
  • 1