Jason A. Rosenzweig

Learn More
Like other pathogenic bacteria, Yersinia and Aeromonas species have been continuously co-evolving with their respective hosts. Although the former is a bonafide human pathogen, the latter has gained notararity as an emerging disease-causing agent. In response to immune cell challenges, bacterial pathogens have developed diverse mechanism(s) enabling their(More)
Microbes are incessantly challenged by both biotic and abiotic stressors threatening their existence. Therefore, bacterial pathogens must possess mechanisms to successfully subvert host immune defenses as well as overcome the stress associated with host-cell encounters. To achieve this, bacterial pathogens typically experience a genetic re-programming(More)
For unsuspecting bacteria, the difference between life and death depends upon efficient and specific responses to various stressors. Facing a much larger world, microbes are invariably challenged with ever-changing environments where temperature, pH, chemicals, and nutrients are in a constant state of flux. Only those that are able to rapidly reprogram(More)
Yersiniosis is a food-borne illness that has become more prevalent in recent years due to human transmission via the fecal-oral route and prevalence in farm animals. Yersiniosis is primarily caused by Yersinia enterocolitica and less frequently by Yersinia pseudotuberculosis. Infection is usually characterized by a self-limiting acute infection beginning in(More)
Bacterial stress responses provide them the opportunity to survive hostile environments, proliferate and potentially cause diseases in humans and animals. The way in which pathogenic bacteria interact with host immune cells triggers a complicated series of events that include rapid genetic re-programming in response to the various host conditions(More)
A paradigm shift in our thinking about the intricacies of the host–parasite interaction is required that considers bacterial structures and their relationship to bacterial pathogenesis. It has been proposed that interactions between extended macromolecular assemblies, termed hyperstructures (which include multiprotein complexes), determine bacterial(More)
Manned space exploration has created a need to evaluate the effects of space-like stress (SLS) on pathogenic and opportunistic microbes. Interestingly, several Gram-negative enteric pathogens, e.g., Salmonella enterica serovar Typhimurium, have revealed a transient hyper-virulent phenotype following simulated microgravity (SMG) or actual space flight(More)
As their environments change, microbes experience various threats and stressors, and in the hypercompetitive microbial world, dynamism and the ability to rapidly respond to such changes allow microbes to outcompete their nutrient-seeking neighbors. Viewed in that light, the very difference between microbial life and death depends on effective stress(More)
The RNA exosome is one of the main 3′ to 5′ exoribonucleases in eukaryotic cells. Although it is responsible for degradation or processing of a wide variety of substrate RNAs, it is very specific and distinguishes between substrate and non-substrate RNAs as well as between substrates that need to be 3′ processed and those that need to be completely(More)
  • 1