Jason A. Bleedorn

Learn More
BACKGROUND Pain and impaired mobility because of osteoarthritis (OA) is common in dogs and humans. Efficacy studies of analgesic drug treatment of dogs with naturally occurring OA may be challenging, as a caregiver placebo effect is typically evident. However, little is known about effect sizes of common outcome-measures in canine clinical trials evaluating(More)
BACKGROUND Non-contact cranial cruciate ligament rupture (CrCLR) is an important cause of lameness in client-owned dogs and typically occurs without obvious injury. There is a high incidence of bilateral rupture at presentation or subsequent contralateral rupture in affected dogs. Although stifle synovitis increases risk of contralateral CrCLR, relatively(More)
Cranial cruciate ligament rupture (CR) is a degenerative condition in dogs that typically has a non-contact mechanism. Subsequent contralateral rupture often develops in dogs with unilateral CR. Synovitis severity is an important factor that promotes ligament degradation. Consequently, we wished to evaluate the utility of arthroscopy for assessment of(More)
BACKGROUND Complete cranial cruciate ligament rupture (CR) is a common cause of pelvic limb lameness in dogs. Dogs with unilateral CR often develop contralateral CR over time. Although radiographic signs of contralateral stifle joint osteoarthritis (OA) influence risk of subsequent contralateral CR, this risk has not been studied in detail. (More)
Mid-substance rupture of the canine cranial cruciate ligament rupture (CR) and associated stifle osteoarthritis (OA) is an important veterinary health problem. CR causes stifle joint instability and contralateral CR often develops. The dog is an important model for human anterior cruciate ligament (ACL) rupture, where rupture of graft repair or the(More)
Peptidergic sensory nerve fibers innervating bone and periosteum are rich in calcitonin gene-related peptide (CGRP), an osteoanabolic neurotransmitter. There are two CGRP isoforms, CGRPα and CGRPβ. Sensory fibers are a potential means by which the nervous system may detect and respond to loading events within the skeleton. However, the functional role of(More)
  • 1