Jasmine A. Nirody

Learn More
In this experimental and theoretical study, we investigate the slithering of snakes on flat surfaces. Previous studies of slithering have rested on the assumption that snakes slither by pushing laterally against rocks and branches. In this study, we develop a theoretical model for slithering locomotion by observing snake motion kinematics and experimentally(More)
Cortical bone porosity is a major determinant of strength, stiffness, and fracture toughness of cortical tissue. The goal of this work was to investigate changes in spatial distribution and microstructure of cortical porosity associated with aging in men and women. The specific aims were to: 1) develop an automated technique for spatial analysis of cortical(More)
PURPOSE The investigation of cortical porosity is an important aspect of understanding biological, pathoetiological, and biomechanical processes occurring within the skeleton. With the emergence of HR-pQCT as a noninvasive tool suitable for clinical use, cortical porosity at appendicular sites can be directly visualized in vivo. The aim of this study was to(More)
OBJECTIVE Continuous application of high-frequency deep brain stimulation (DBS) often effectively reduces motor symptoms of Parkinson's disease patients. While there is a growing need for more effective and less traumatic stimulation, the exact mechanism of DBS is still unknown. Here, we present a methodology to exploit the plasticity of GABAergic synapses(More)
The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the(More)
bundles undergo deformations highly similar to a twisted rod under compression. Our data suggests that tau-like proteins minimize microtubule lattice interactions and the prevent torque generation that leads to extreme neuron deformations. These experimental results, together with mechanical modeling of the neuron, suggest that spectrin tension and(More)
Introduction In advanced Parkinson’s disease (PD), deep brain stimulation (DBS) can be used to disrupt pathological activity in the basal ganglia, thereby reducing PD motor symptoms. The standard protocol for DBS, continuous high frequency stimulation of target cells, is applied notably in subthalamic nucleus (STN) or globus pallidus pars interna. It is(More)
UNLABELLED We present a tool, diCal-IBD, for detecting identity-by-descent (IBD) tracts between pairs of genomic sequences. Our method builds on a recent demographic inference method based on the coalescent with recombination, and is able to incorporate demographic information as a prior. Simulation study shows that diCal-IBD has significantly higher recall(More)
Recent experiments on the bacterial flagellar motor have shown that the structure of this nanomachine, which drives locomotion in a wide range of bacterial species, is more dynamic than previously believed. Specifically, the number of active torque-generating complexes (stators) was shown to vary across applied loads. This finding brings under scrutiny the(More)
Background Pathophysiology of Parkinson’s disease (PD) is characterized by increased firing rates of cells in the basal ganglia, a tendency toward bursting and abnormal synchronization in cells of subthalamic nucleus (STN) and globus pallidus pars externa (GPe) [1]. In advanced PD, deep brain stimulation (DBS) can be used to disrupt this pathological(More)