Jasmin K. Hefendehl

Learn More
Extracellular deposition of the amyloid-β peptide (Aβ) in the brain parenchyma is a hallmark lesion of Alzheimer's disease (AD) and a predictive marker for the progression of preclinical to symptomatic AD. Here, we used multiphoton in vivo imaging to study Aβ plaque formation in the brains of 3- to 4-month-old APPPS1 transgenic mice over a period of 6(More)
Microglia cells are essential for brain homeostasis and have essential roles in neurodegenerative diseases. Aging is the main risk factor for most neurodegenerative diseases, and age-related changes in microglia may contribute to the susceptibility of the aging brain to dysfunction and neurodegeneration. We have analyzed morphology and dynamic behavior of(More)
Cramer et al. (Reports, 23 March 2012, p. 1503; published online 9 February 2012) reported that bexarotene rapidly reduces b-amyloid (Ab) levels and plaque burden in two mouse models of Ab deposition in Alzheimer’s disease (AD). We now report that, although bexarotene reduces soluble Ab40 levels in one of the mouse models, the drug has no impact on plaque(More)
Microglia are morphologically dynamic cells that rapidly extend their processes in response to various stimuli including extracellular ATP. In this study, we tested the hypothesis that stimulation of neuronal NMDARs trigger ATP release leading to communication with microglia. We used acute mouse hippocampal brain slices and two-photon laser scanning(More)
Familial Danish dementia (FDD) is a progressive neurodegenerative disease with cerebral deposition of Dan-amyloid (ADan), neuroinflammation, and neurofibrillary tangles, hallmark characteristics remarkably similar to those in Alzheimer's disease (AD). We have generated transgenic (tg) mouse models of familial Danish dementia that exhibit the age-dependent(More)
Repetitive in vivo imaging in mice has become an indispensable tool for studying dynamic changes in structure and function of the brain. We describe a head fixation system, which allows rapid re-localization of previously imaged regions of interest (ROIs) within the brain. Such ROIs can be automatically relocated and imaged over weeks to months with(More)
To clarify the role of microglia in brain homeostasis and disease, an understanding of their maintenance, proliferation and turnover is essential. The lifespan of brain microglia, however, remains uncertain, and reflects confounding factors in earlier assessments that were largely indirect. We genetically labeled single resident microglia in living mice and(More)
  • 1