Jaroslav M. Ilnytskyi

Learn More
Side chain liquid crystalline polymer with relatively long spacer was modeled on a semiatomistic level and studied in different liquid crystalline phases with the aid of molecular dynamics simulations. Well equilibrated isotropic, polydomain smectic and monodomain smectic phases were studied for their structural and dynamic properties. Particular emphasis(More)
Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends(More)
A coarse-grained simulation model for a third generation liquid crystalline dendrimer (LCDr) is presented. It allows, for the first time, for a successful molecular simulation study of a relation between the shape of a polyphilic macromolecular mesogen and the symmetry of a macroscopic phase. The model dendrimer consists of a soft central sphere and 32(More)
We performed molecular dynamics simulations of a liquid crystal elastomer of side-chain architecture. The network is formed from a melt of 28 molecules each having a backbone of 100 hydrocarbon monomers, to which 50 side chains are attached in a syndiotactic way. Crosslinking is performed in the smectic A phase. We observe an increase of the(More)
A microscopic theory is developed to describe light-induced deformation of azobenzene polymers of different chemical structures: uncross-linked low-molecular-weight azobenzene polymers and cross-linked azobenzene polymers (azobenzene elastomers) bearing azobenzene chromophores in their strands. According to the microscopic theory the light-induced(More)
There were investigated phase diagram and distribution profile of the director field of simulated liquid crystal which is kept in the pore with homeotropic boundary conditions in different phases. By the means of molecular dynamics method there was performed the computer simulation of the changes of refractive index profile in gradient lightguide under the(More)
By means of the asynchronous cellular automata algorithm we study stationary states and spatial patterning in an SIS model, in which the individuals’ are attached to the vertices of a graph and their mobility is mimicked by varying the neighbourhood size q. The versions with fixed q and those taken at random at each step and for each individual are studied.(More)
We consider the applicability of coarse-grained molecular dynamics for the simulation of defects in a nematic liquid crystal around a colloidal particle. Two types of colloids are considered, a soft colloid resembling a liquid crystal dendrimer or a similar macromolecule. In addition, a decorated colloid is used which could represent a gold nanoparticle(More)
Kinetics of photoisomerization and time evolution of ordering in azobenzene-containing materials are studied theoretically and by using computer simulations. Starting from kinetic equations of photoisomerization, we show that the influence of light is equivalent to the action of the effective potential, which reorients chromophores perpendicularly to(More)