Learn More
This paper presents a new set of hemispherical basis functions dedicated to hemispherical data representation. These functions are derived from associated Legendre polynomials. We demonstrate the usefulness of this basis for representation of surface reflectance functions, rendering using environment maps and for efficient global illumination computation(More)
This paper presents a new technique for modification of 3D terrains by hydraulic erosion. It efficiently couples fluid simulation using a Lagrangian approach, namely the Smoothed Particle Hydrodynamics (SPH) method, and a physically-based erosion model adopted from an Eulerian approach. The eroded sediment is associated with the SPH particles and is(More)
Realistic rendering requires computing the global illumination in the scene, and Monte Carlo integration is the best-known method for doing that. The key to good performance is to carefully select the costly integration samples, which is usually achieved via importance sampling. Unfortunately, visibility is difficult to factor into the importance(More)
In this paper we present a ray tracing based method for accelerated global illumination computation in scenes with low-frequency glossy BRDFs. The method is based on sparse sampling, caching, and interpolating radiance on glossy surfaces. In particular we extend the irradiance caching scheme of [WRC88] to cache and interpolate directional incoming radiance(More)
Fast global illumination computation is a challenge in several fields such as lighting simulation and computergenerated visual effects for movies. To this end, the irradiance caching algorithm is commonly used since it provides high-quality rendering in a reasonable time. However this algorithm relies on a spatial data structure in which nearest-neighbors(More)
We present a step toward interactive physics-based modeling of terrains. A terrain, composed of layers of materials, is edited with interactive modeling tools built upon different physics-based erosion and deposition algorithms. First, two hydraulic erosion algorithms for running water are coupled. Areas where the motion is slow become more eroded by the(More)
Radiance and irradiance caching are efficient global illumination algorithms based on interpolating indirect illumination from a sparse set of cached values. In this paper we propose an adaptive algorithm for guiding spatial density of the cached values in radiance and irradiance caching. The density is adapted to the rate of change of indirect illumination(More)
We present a new fast algorithm for rendering the depth-of-field effect for point-based surfaces. The algorithm handles partial occlusion correctly, it does not suffer from intensity leakage and it renders depth-of-field in presence of transparent surfaces. The algorithm is new in that it exploits the level-of-detail to select the surface detail according(More)
In this paper, we aim to lift the accuracy limitations of many-light algorithms by introducing a new light type, the <i>virtual spherical light</i> (VSL). The illumination contribution of a VSL is computed over a non-zero solid angle, thus eliminating the illumination spikes that virtual point lights used in traditional many-light methods are notorious for.(More)