Jaromir Sykora

Learn More
TNF-related apoptosis-inducing ligand (TRAIL), a promising novel anti-cancer cytokine of the TNF superfamily, and Bortezomib, the first-in-class clinically used proteasome inhibitor, alone or in combination have been shown to efficiently kill numerous tumor cell lines. However, data concerning primary human tumor cells are very rare. Using primary(More)
Cancer stem cells (CSCs) have been implicated in the initiation and maintenance of tumour growth as well as metastasis. Recent reports link stemness to epithelial-mesenchymal transition (EMT) in cancer. However, there is still little knowledge about the molecular markers of those events. In silico analysis of RNA profiles of 36 pancreatic ductal(More)
Glioblastoma (GBM) is one of the most aggressive types of cancer with limited therapeutic options and unfavorable prognosis. Stemness and non-classical epithelial-to-mesenchymal transition (ncEMT) features underlie the switch from normal to neoplastic states as well as resistance of tumor clones to current therapies. Therefore, identification of(More)
Glioblastoma is a disease characterized by rapid invasive tumour growth. Studies on the proapoptotic CD95/CD95L signalling pathway recently suggested a significant contribution of CD95 signalling towards the high degree of motility in glioma cells. Apogenix has developed APG101, a clinical phase II compound designed to bind and neutralize CD95L, and thus to(More)
An imbalance between proliferation and apoptosis is one of the main features of carcinogenesis. TRAIL (TNF-related apoptosis-inducing ligand) induces apoptosis upon binding to the TRAIL death receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2, whereas binding to TRAIL-R3 and TRAIL-R4 might promote cell survival and proliferation. The anti-tumor activity of(More)
The mechanism by which HIV and HCV cooperatively accelerate hepatocyte damage is not clearly understood; however, each virus affects the TRAIL: TRAIL-receptor system. We, therefore, questioned whether the independent effects of HCV and HIV combine to synergistically result in TRAIL dependent hepatocyte killing. We describe that Huh7 hepatocytes treated with(More)
  • 1