Learn More
This paper proposes an energy efficient collaborative cyclostationary spectrum sensing approach for cognitive radio systems. An existing statistical hypothesis test for the presence of cyclostationarity is extended to multiple cyclic frequencies and its asymptotic distributions are established. Collaborative test statistics are proposed for the fusion of(More)
Cognitive radios sense the radio spectrum in order to find unused frequency bands and use them in an agile manner. Transmission by the primary user must be detected reliably even in the low signal-to-noise ratio (SNR) regime and in the face of shadowing and fading. Communication signals are typically cyclostationary, and have many periodic statistical(More)
Cognitive radios sense the radio spectrum in order to find underutilized spectrum and then exploit it in an agile manner. Spectrum sensing has to be performed reliably in challenging propagation environments characterized by shadowing and fading effects as well as heavy-tailed noise distributions. In this paper, a robust computationally efficient(More)
A simple and efficient spectrum sensing scheme for orthogonal frequency division multiplexing (OFDM) signals of primary user in cognitive radio systems is proposed in this paper. A detector exploiting the well-known autocorrelation property of cyclic prefix (CP) based OFDM signals is developed. The proposed scheme is then extended to the case of many(More)
This paper focuses on the performance analysis and comparison of hard decision (HD) and soft decision (SD) based approaches for cooperative spectrum sensing in the presence of reporting channel errors. For cooperative sensing (CS) in cognitive radio networks, a distributed detection approach with displaced sensors and a fusion center (FC) is employed. For(More)
The main focus of this paper is to present a performance limitation of collaborative spectrum sensing in cognitive radios with imperfect reporting channels. We consider hard decision (HD) based cooperative sensing (CS), in which each SU sends a one-bit binary decision corresponding to the absence or the presence of primary user (PU) to a fusion center (FC).(More)
This paper introduces a machine learning based collaborative multi-band spectrum sensing policy for cognitive radios. The proposed sensing policy guides secondary users to focus the search of unused radio spectrum to those frequencies that persistently provide them high data rate. The proposed policy is based on machine learning, which makes it adaptive(More)
Cognitive radios and flexible spectrum use (FSU) provide an efficient way to exploit underutilized radio spectrum by allowing secondary users to access licensed frequencies in an agile manner with the constraint that the licensed user will not be interfered. In order to identify such spectral opportunities, spectrum sensing is needed by the secondary users.(More)