Learn More
—This paper proposes an energy efficient collaborative cyclostationary spectrum sensing approach for cognitive radio systems. An existing statistical hypothesis test for the presence of cyclostationarity is extended to multiple cyclic frequencies and its asymptotic distributions are established. Collaborative test statistics are proposed for the fusion of(More)
—Cognitive radios sense the radio spectrum in order to find unused frequency bands and use them in an agile manner. Transmission by the primary user must be detected reliably even in the low signal-to-noise ratio (SNR) regime and in the face of shadowing and fading. Communication signals are typically cyclostationary, and have many periodic statistical(More)
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the Helsinki University of Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for(More)
—The main focus of this paper is to present a performance limitation of collaborative spectrum sensing in cognitive radios with imperfect reporting channels. We consider hard decision (HD) based cooperative sensing (CS), in which each SU sends a one-bit binary decision corresponding to the absence or the presence of primary user (PU) to a fusion center(More)
This paper introduces a machine learning based collaborative multi-band spectrum sensing policy for cognitive radios. The proposed sensing policy guides secondary users to focus the search of unused radio spectrum to those frequencies that persistently provide them high data rate. The proposed policy is based on machine learning, which makes it adaptive(More)