Learn More
A layered organization of cells is a common architectural feature of many neuronal formations. Mutations of the zebrafish gene nagie oko (nok) produce a severe disruption of retinal architecture, indicating a key role for this locus in neuronal patterning. We show that nok encodes a membrane-associated guanylate kinase-family scaffolding protein. Nok(More)
BACKGROUND Polarity is an essential attribute of most eukaryotic cells. One of the most prominent features of cell polarity in many tissues is the subdivision of cell membrane into apical and basolateral compartments by a belt of cell junctions. The proper formation of this subdivision is of key importance. In sensory cells, for example, the apical membrane(More)
Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in(More)
Quantification of cells is a critical step towards the assessment of cell fate in neurological disease or developmental models. Here, we present a novel cell detection method for the automatic quantification of zebrafish neuronal cells, including primary motor neurons, Rohon-Beard neurons, and retinal cells. Our method consists of four steps. First, a(More)
  • Seonhee Kim, Maria K. Lehtinen, Alessandro Sessa, Mauro W. Zappaterra, Seo-Hee Cho, Dilenny Gonzalez +8 others
  • 2010
Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive(More)
To gain an understanding of molecular events that underlie pattern formation in the retina, we evaluated the expression profiles of over 8000 transcripts randomly selected from an embryonic zebrafish library. Detailed analysis of cDNAs that display restricted expression patterns revealed factors that are specifically expressed in single cell classes and are(More)
Vision mediating photoreceptor cells are specialized light-sensitive neurons in the outer layer of the vertebrate retina. The human retina contains approximately 130 million of such photoreceptors, which enable images of the external environment to be captured at high resolution and high sensitivity. Rod and cone photoreceptor subtypes are further(More)
The zebrafish has become an important vertebrate animal model for the study of developmental biology, functional genomics, and disease mechanisms. It is also being used for drug discovery. Computerized detection of blob objects has been one of the important tasks in quantitative phenotyping of zebrafish. We present a new automated method that is able to(More)
Organelles are frequently distributed in a nonrandom manner in a cell's cytoplasm. A particular distribution pattern often facilitates a specific function of a cell, whereas its aberrations can lead to cell death. We show that a mutation in the zebrafish mikre oko (mok) locus, which encodes dynactin 1 subunit of the dynactin complex, produces a severe(More)
The differentiation of distinct cell populations in the retina is a multi-step process that involves cell cycle exit, migration, and dramatic changes of cell morphology. All these steps are tightly controlled by multiple regulatory pathways, which involve both cell-autonomous networks of transcription factors and cell-cell signaling events. Additional(More)