Jared V. Goldstone

Learn More
Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling(More)
The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land.(More)
The cytochrome P4501C (CYP1C) gene subfamily was recently discovered in fish, and zebrafish (Danio rerio) CYP1C1 transcript has been cloned. Here we cloned the paralogous CYP1C2, showing that the amino acid sequence is 78% identical to CYP1C1, and examined gene structure and expression of CYP1A, CYP1B1, CYP1C1, and CYP1C2. Xenobiotic response elements were(More)
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with(More)
The non-ortho-polychlorinated biphenyl (PCB) congener 3,3'4,4'-tetrachlorobiphenyl (PCB 77) can uncouple the catalytic cycle of fish (scup) cytochrome P4501A (CYP1A) and mammalian (rat, human) CYP1A1, stimulating release of reactive oxygen species (ROS). PCB 77 also inactivates CYP1A in an NADPH-, oxygen-, and time-dependent process, linked to uncoupling.(More)
Metazoan genomes contain large numbers of genes that participate in responses to environmental stressors. We surveyed the sea urchin Strongylocentrotus purpuratus genome for homologs of gene families thought to protect against chemical stressors; these genes collectively comprise the 'chemical defensome.' Chemical defense genes include cytochromes P450 and(More)
Enzymes in the cytochrome P450 1 family oxidize many common environmental toxicants. We identified a new CYP1, termed CYP1D1, in zebrafish. Phylogenetically, CYP1D1 is paralogous to CYP1A and the two share 45% amino acid identity and similar gene structure. In adult zebrafish, CYP1D1 is most highly expressed in liver and is relatively highly expressed in(More)
Two novel CYP1 genes from teleost fish constituting a new subfamily have been cloned. These paralogous sequences are designated CYP1C1 and CYP1C2. Both genes were initially obtained from untreated scup Stenotomus chrysops tissues by RT-PCR and RACE. Scup CYP1C1 and CYP1C2 code for 524 and 525 amino acids, respectively, and share 80-81% identity at the(More)
Cytochrome P450 family 1 (CYP1) proteins are important in a large number of toxicological processes. CYP1A and CYP1B genes are well known in mammals, but the evolutionary history of the CYP1 family as a whole is obscure; that history may provide insight into endogenous functions of CYP1 enzymes. Here, we identify CYP1-like genes in early deuterostomes(More)
Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially(More)