Learn More
Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling(More)
Two novel CYP1 genes from teleost fish constituting a new subfamily have been cloned. These paralogous sequences are designated CYP1C1 and CYP1C2. Both genes were initially obtained from untreated scup Stenotomus chrysops tissues by RT-PCR and RACE. Scup CYP1C1 and CYP1C2 code for 524 and 525 amino acids, respectively, and share 80-81% identity at the(More)
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with(More)
The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land.(More)
The non-ortho-polychlorinated biphenyl (PCB) congener 3,3'4,4'-tetrachlorobiphenyl (PCB 77) can uncouple the catalytic cycle of fish (scup) cytochrome P4501A (CYP1A) and mammalian (rat, human) CYP1A1, stimulating release of reactive oxygen species (ROS). PCB 77 also inactivates CYP1A in an NADPH-, oxygen-, and time-dependent process, linked to uncoupling.(More)
BACKGROUND Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs(More)
Ligand-activated receptors regulate numerous genes, and mediate effects of a broad set of endogenous and exogenous chemicals in vertebrates. Understanding the roles of these transcription factors in zebrafish (Danio rerio) is important to the use of this non-mammalian model in toxicological, pharmacological, and carcinogenesis research. Response to a(More)
Metazoan genomes contain large numbers of genes that participate in responses to environmental stressors. We surveyed the sea urchin Strongylocentrotus purpuratus genome for homologs of gene families thought to protect against chemical stressors; these genes collectively comprise the 'chemical defensome.' Chemical defense genes include cytochromes P450 and(More)
Enzymes in the cytochrome P450 1 family oxidize many common environmental toxicants. We identified a new CYP1, termed CYP1D1, in zebrafish. Phylogenetically, CYP1D1 is paralogous to CYP1A and the two share 45% amino acid identity and similar gene structure. In adult zebrafish, CYP1D1 is most highly expressed in liver and is relatively highly expressed in(More)
Multixenobiotic transporters have been extensively studied for their ability to modulate the disposition and toxicity of pharmacological agents, yet their influence in regulating the levels of dietary toxins within marine consumers has only recently been explored. This study presents functional and molecular evidence for multixenobiotic transporter-mediated(More)