Jared S. Fowles

Learn More
The lack of advanced animal models of human cancers is considered a barrier to developing effective therapeutics. Canine and human melanomas are histologically disparate but show similar disease progression and response to therapies. The purpose of these studies was to compare human and canine melanoma tumours and cell lines regarding MAPK and PI3K/AKT(More)
Genomics-based predictors of drug response have the potential to improve outcomes associated with cancer therapy. Osteosarcoma (OS), the most common primary bone cancer in dogs, is commonly treated with adjuvant doxorubicin or carboplatin following amputation of the affected limb. We evaluated the use of gene-expression based models built in an intra- or(More)
Mammalian cell tissue culture has been a critical tool leading to our current understanding of cancer including many aspects of cellular transformation, growth and response to therapies. The current use of large panels of cell lines with associated phenotypic and genotypic information now allows for informatics approaches and in silico screens to rapidly(More)
The use of patient-specific data in drug and dose selection is becoming an increasingly important component in cancer therapy. Basing drug choice on molecular aspects of the tumor is consistent with the identification of cancer as a molecular disease or diseases, even within the same histological type, and its treatment specific to the background from which(More)
  • 1