Learn More
Cloud computing has emerged as a new approach to large scale computing and is attracting a lot of attention from the scientific and research computing communities. Despite its growing popularity, it is still unclear just how well the cloud model of computation will serve scientific applications. In this paper we analyze the applicability of cloud to the(More)
—Carrying out science at extreme scale is the next generational challenge facing the broad field of scientific research. Cloud computing offers to potential for an increasing number of researchers to have ready access to the large scale compute resources required to tackle new challenges in their field. Unfortunately barriers of complexity remain for(More)
We introduce Trident, a scientific workflow workbench that is built on top of a commercial workflow system to leverage existing functionality. Trident is being developed in collaboration with the scientific community for oceanography, but the workbench itself can be used for any science project for scientific workflow.
—As the emergence of cloud computing brings the potential for large-scale data analysis to a broader community, architectural patterns for data analysis on the cloud, especially those addressing iterative algorithms, are increasingly useful. MapReduce suffers performance limitations for this purpose as it is not inherently designed for iterative algorithms.(More)
To effectively support real-time monitoring and performance analysis of scientific workflow execution, varying levels of event data must be captured and made available to interested parties. This paper discusses the creation of an ontology-aware workflow monitoring system for use in the Trident system which utilizes a distributed publish/subscribe event(More)