Jaona Randrianalisoa

Learn More
An improved method used to determine the absorption and scattering characteristics of a weakly absorbing substance containing bubbles is suggested. The identification procedure is based on a combination of directional-hemispherical measurements and predictions of Mie-scattering theory including approximate relations for a medium with polydisperse bubbles. A(More)
Radiative characteristics such as the extinction coefficient, the scattering albedo, and the scattering phase function of fused quartz containing closed cells are determined by using an inverse method based on theoretical and experimental bidirectional transmittances. The theoretical transmittances are obtained by solving the radiative transfer equation(More)
Modeling of radiation characteristics of semitransparent media containing particles or bubbles in the independent scattering limit is examined. The existing radiative properties models of a single particle in an absorbing medium using the approaches based on (1) the classical Mie theory neglecting absorption by the matrix, (2) the far field approximation,(More)
A modified two-flux approximation is suggested for calculating the hemispherical transmittance and reflectance of a refracting, absorbing, and scattering medium in the case of collimated irradiation of the sample along the normal to the interface. The Fresnel reflection is taken into account in this approach. It is shown that the new approximation is rather(More)
The effects of pore size on direction-averaged radiative properties of three-dimensionally ordered macroporous (3DOM) cerium dioxide (ceria) particles are investigated in the spectral range of 0.3-10 μm. The particles are of spherical shape and contain interconnected pores in a face-centered cubic lattice arrangement. The porous particle is modeled as a(More)
Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating(More)
  • 1