Learn More
In a variety of disease settings the expression of the endothelial selectins E- and P-selectin appears to be increased. This feature makes these molecules attractive targets around which to design directed drug-delivery schemes. One possible approach for achieving such delivery is to use polymeric biodegradable microspheres bearing a humanized monoclonal(More)
This paper reports on the development and preliminary testing of a three-dimensional implementation of an inverse problem technique for extracting soft-tissue elasticity information via non-rigid model-based image registration. The modality-independent elastography (MIE) algorithm adjusts the elastic properties of a biomechanical model to achieve maximal(More)
A semi-automated, non-rigid breast surface registration method is presented that involves solving the Laplace or diffusion equations over undeformed and deformed breast surfaces. The resulting potential energy fields and isocontours are used to establish surface correspondence. This novel surface-based method, which does not require intensity images,(More)
The use of palpation information for skin disease characterization is not as commonly used as in other soft tissues, although mechanical differences within lesions have been noted. For example, regions of hyperkeratosis have the potential to transform into cancerous lesions and likely feature different material properties from those of surrounding normal(More)
Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm and are often determined by time-consuming point correspondence methods requiring manual user(More)
An elastographic reconstruction method has been developed to recover the material properties of soft tissue by modelbased analysis of image data acquired at different states of mechanical loading. The algorithm utilizes image similarity as part of the cost function for a multi-resolution, non-linear optimization. Previous work with a phantom membrane used(More)
This paper reports on the development and preliminary testing of a threedimensional implementation of an inverse problem technique for extracting soft-tissue elasticity information via non-rigid model-based image registration. The modality-independent elastography (MIE) algorithm adjusts the elastic properties of a biomechanical model to achieve maximal(More)
Recent advances in breast cancer imaging have generated new ways to characterize the disease. Many analysis techniques require a method for determining correspondence between a pendant breast surface before and after a deformation. In this paper, an automated point correspondence method that uses the surface Laplacian or the diffusion equation coupled to an(More)
This work extends a recently realized inverse problem technique of extracting soft tissue elasticity information via nonrigid model-based image registration. The algorithm uses the elastic properties of the tissue in a biomechanical model to achieve maximal similarity between image data acquired under different states of loading. A new multi-resolution,(More)