Jannic Boehm

Learn More
Amyloid-β and tau protein are the two most prominent factors in the pathology of Alzheimer disease. Recent studies indicate that phosphorylated tau might affect synaptic function. We now show that endogenous tau is found at postsynaptic sites where it interacts with the PSD95-NMDA receptor complex. NMDA receptor activation leads to a selective(More)
Alzheimer's disease (AD) is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ) and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there(More)
Alzheimer disease is characterized by a gradual decrease of synaptic function and, ultimately, by neuronal loss. There is considerable evidence supporting the involvement of oligomeric amyloid-beta (Aβ) in the etiology of Alzheimer's disease. Historically, AD research has mainly focused on the long-term changes caused by Aβ rather than analyzing its(More)
Alzheimer's disease, with its two most prominent pathological factors amyloid beta and tau protein, can be described as a disease of the synapse. It therefore comes as little surprise that NMDA receptor-related synaptic dysfunction had been thought for several years to underlie the synaptic pathophysiology seen in Alzheimer's disease. In this review I will(More)
Alzheimer disease (AD) is initially characterized as a disease of the synapse that affects synaptic transmission and synaptic plasticity. While amyloid-beta and tau have been traditionally implicated in causing AD, recent studies suggest that other factors, such as the intracellular domain of the amyloid-precursor protein (APP-ICD), can also play a role in(More)
Background: Tau phosphorylation affects synaptic transmission, but the underlying mechanism remains elusive. Results: NMDA-receptor activation leads to phosphorylation of endogenous tau, thereby regulating the interaction of tau with Fyn and postsynaptic scaffolding protein PSD95. Conclusions: Phosphorylation of tau controls the interaction of tau with the(More)
BACKGROUND Human studies and mouse models of Alzheimer's disease suggest that the amyloid precursor protein (APP) can cause changes in synaptic plasticity and is contributing to the memory deficits seen in Alzheimer's disease. While most of these studies attribute these changes to the APP cleavage product Aβ, in recent years it became apparent that the APP(More)
  • 1