Janine M. Wotton

Learn More
Typically, individual neural cells operate on a millisecond time scale yet behaviorally animals reveal sub-microsecond acuity. Our model resolves this huge discrepancy by using populations of many widely tuned cells to attain sub-microsecond resolution in a temporal discrimination task. An echolocating bat uses its auditory system to locate objects and it(More)
Ambiguous figures were primed with picture context, movement, and by presentation of a prior ambiguous figure. We tested two mammal/bird figures to determine if the multiple primes would add or interfere. Picture priming was effective for both figures but diminished with the presentation of a prior ambiguous figure. For the 'swan/squirrel' there was little(More)
Frogs rely upon vocal communication to advertise for potential mates, to defend territory and to alarm neighbors of danger. Cells in the auditory midbrain of an awake frog display tuning to the spectral energy present in calls based upon discharge rate and encode the temporal properties of calls in the timing of their discharges. This laboratory experiment(More)
Günther Zupanc's Behavioral Neurobiology is primarily a neuroethological textbook that is based on his experiences teaching both beginners and advanced level students in neurobiology. He has produced a book that students find fascinating and clearly written. This book is not intended as a comprehensive survey of behavioral neurobiology, but it does(More)
The external-ear transfer function for big brown bats (Eptesicus fuscus) contains two prominent notches that vary from 30 to 55 kHz and from 70 to 100 kHz, respectively, as sound-source elevation moves from -40 to +10 degrees. These notches resemble a higher-frequency version of external-ear cues for vertical localization in humans and other mammals.(More)
  • 1