Learn More
The ruminant trans fatty acid vaccenic acid (tVA) favorably alters markers of inflammation. However, it is not yet clear whether these effects are attributed to its endogenous partial conversion to c9,t11-CLA, which is known to possess anti-inflammatory properties. We compared the cytokine reducing potential of tVA to c9,t11-CLA in human T-helper (Th) cells(More)
Degradable magnesium alloys for biomedical application are on the verge of being used clinically. Rare earth elements (REEs) are used to improve the mechanical properties of the alloys, but in more or less undefined mixtures. For some elements of this group, data on toxicity and influence on cells are sparse. Therefore in this study the in vitro(More)
The aim of this study was to investigate whether the extruded magnesium alloy LAE442 reacts in vivo with an appropriate host response and to investigate how an additional magnesium fluoride (MgF(2)) coating influences the in vivo corrosion rate. Forty cylinders were machined from extruded LAE442 and 20 of these were coated additionally with MgF(2) and(More)
In eukaryotic cells, membranous vesicles and organelles are transported by ensembles of motor proteins. These motors, such as kinesin-1, have been well characterized in vitro as single molecules or as ensembles rigidly attached to nonbiological substrates. However, the collective transport by membrane-anchored motors, that is, motors attached to a fluid(More)
The understanding of corrosion processes of metal implants in the human body is a key problem in modern biomaterial science. Because of the complicated and adjustable in vivo environment, in vitro experiments require the analysis of various physiological corrosion media to elucidate the underlying mechanism of "biological" metal surface modification. In(More)
Magnesium (Mg) alloys are promising materials for the development of biodegradable implants. However, the current in vitro test procedures for cytotoxicity, cell viability and proliferation are not always suitable for this class of materials. In this paper we show that tetrazolium-salt-based assays, which are widely used in practice, are influenced by the(More)
Question: What causes early muscle (myofib-rillar) fatigue in intact muscle fibers, and how does temperature affect these results? Background: When muscles are activated by motoneurons, they respond by generating tension in the muscle fibers. This process requires the hydrolysis of ATP, which results in an accumulation of metabolic products. The(More)
  • 1