Janina Leyk

Learn More
Proteinaceous inclusions in nerve cells and glia are a defining neuropathological hallmark in a variety of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Their occurrence may be related to malfunctions of the proteolytic degradation systems. In(More)
The failure to clear misfolded or aggregated proteins from the cytoplasm of nerve cells and glia is a common pathogenic event in a variety of neurodegenerative disorders. This might be causally related to defects in the major proteolytic systems, i.e., the ubiquitin-proteasomal system and the autophagic pathway. Large protein aggregates and defective(More)
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family. It is localized within the cytoplasm and has unique substrate specificities for nonhistone proteins, such as α-tubulin. Furthermore, it plays a major role in protein aggregate formation and recently was demonstrated to interact with the microtubule associated protein tau and tau was(More)
Oligodendrocytes, the myelin-forming cells of the central nervous system, play important roles in brain development and maintenance. Activity-dependent neuroprotective protein (ADNP), an early marker essential for brain formation, interacts with microtubule end-binding proteins (EB1, EB2, and EB3). EB1 and EB3 are highly expressed in neurons (axons and(More)
Retinal diseases, such as hereditary retinitis pigmentosa and age-related macular degeneration, are characterized by the progressive loss of photoreceptors. Histone deacetylase 6 (HDAC6) is considered as a stress surveillance factor and a potential target for neuroprotection and regeneration. Overexpression of HDAC6 has been connected to neurodegenerative(More)
  • 1