Janice A Sindac

Learn More
Neurotropic alphaviruses, including western, eastern, and Venezuelan equine encephalitis viruses, cause serious and potentially fatal central nervous system infections in humans for which no currently approved therapies exist. We previously identified a series of thieno[3,2-b]pyrrole derivatives as novel inhibitors of neurotropic alphavirus replication,(More)
Arboviral encephalitis is a potentially devastating human disease with no approved therapies that target virus replication. We previously discovered a novel class of thieno[3,2-b]pyrrole-based inhibitors active against neurotropic alphaviruses such as western equine encephalitis virus (WEEV) in cultured cells. In this report, we describe initial development(More)
The synthesis and SAR for a novel series of pyrrolotriazines as pan-Aurora kinase inhibitors are described. Optimization of the cyclopropane carboxamide terminus of lead compound 1 resulted in analogs with high cellular activity and improved rat PK profiles. Notably, compound 17l demonstrated tumor growth inhibition in a mouse xenograft model.
Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan virus, are mosquito-borne pathogens that infect the central nervous system causing acute and potentially fatal encephalitis. We previously reported a novel series of indole-2-carboxamides as alphavirus replication inhibitors, one of which conferred protection(More)
Neurotropic alphaviruses are debilitating pathogens that infect the central nervous system (CNS) and are transmitted to humans via mosquitoes. There exist no effective human vaccines against these viruses, underlining the need for effective antivirals, but no antiviral drugs are available for treating infection once the viruses have invaded the CNS.(More)
  • 1