Janez Plavec

Learn More
Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrP(C)) conformer, denoted as infectious scrapie isoform or PrP(Sc). In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrP(Sc) in(More)
Let-7 microRNA (miRNA) regulates heterochronic genes in developmental timing of the nematode Caenorhabditis elegans. Binding of miRNA to messenger RNA (mRNA) and structural features of the complex are crucial for gene silencing. We herein present the NMR solution structure of a model mimicking the interaction of let-7 miRNA with its complementary site (LCS(More)
The formation of a single G-quadruplex structure adopted by a promising 25 nt G-rich vascular endothelial growth factor aptamer in a K(+) rich environment was facilitated by locked nucleic acid modifications. An unprecedented all parallel-stranded monomeric G-quadruplex with three G-quartet planes exhibits several unique structural features. Five(More)
The most common form of prion disease in humans is sCJD (sporadic Creutzfeldt-Jakob disease). The naturally occurring E219K polymorphism in the HuPrP (human prion protein) is considered to protect against sCJD. To gain insight into the structural basis of its protective influence we have determined the NMR structure of recombinant HuPrP (residues 90-231)(More)
The G4C2 hexanucleotide repeat expansion, located in the first intron of the C9ORF72 gene, represents a major genetic hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Several hypotheses have been proposed on how the transcribed repeat RNA leads to the development of amyotrophic lateral sclerosis and frontotemporal lobar(More)
We report on the synthesis of 4-hydroxycoumarin dimers 1-15 bearing an aryl substituent on the central linker and fused benzopyranocoumarin derivatives 16-20 and on their in vitro broad anti-DNA and RNA virus activity evaluations. The chemical identities and structure of compounds 1-20 were deduced from their homo- and heteronuclear NMR measurements whereas(More)
We herein report on the formation and high-resolution NMR solution-state structure determination of a G-quadruplex adopted by d[G(3)ATG(3)ACACAG(4)ACG(3)] comprised of four G-tracts with the third one consisting of four guanines that are intervened with non-G streches of different lengths. A single intramolecular antiparallel (3+1) G-quadruplex exhibits(More)
Multinuclear NMR study has demonstrated that G-quadruplex adopted by d(G3T4G4) exhibits two cation binding sites between three of its G-quartets. Titration of tighter binding K+ ions into the solution of d(G3T4G4)2 folded in the presence of 15NH4+ ions uncovered a mixed mono-K+-mono-15NH4+ form that represents intermediate in the conversion of di-15NH4+(More)
DNA can form diverse higher-order structures, whose details are greatly dependent on nucleotide sequence. G-rich sequences containing four or more repeats of three guanines are expected to form G-quadruplexes. Here we show that DNA sequences with GGGAGCG repeats found in the regulatory region of the PLEKHG3 gene are capable of forming tetrahelical DNA(More)
d[G4(T4G4)3] has been folded into a unimolecular G-quadruplex in the presence of 15NH4+ ions. NMR spectroscopy confirmed that its topology is the same as the solution state structure determined earlier by Wang and Patel (J. Mol. Biol., 1995; 251: 76-94) in the presence of Na+ ions. The d[G4(T4G4)3] G-quadruplex exhibits four G-quartets with three(More)