Janette Mezeyova

Learn More
Voltage-gated calcium channels represent a heterogenous family of calcium-selective channels that can be distinguished by their molecular, electrophysiological, and pharmacological characteristics. We report here the molecular cloning and functional expression of three members of the low voltage-activated calcium channel family from rat brain (alpha(1G),(More)
Childhood absence epilepsy (CAE) is a type of generalized epilepsy observed in 2-10% of epileptic children. In a recent study by Chen et al. (Chen, Y., Lu, J., Pan, H., Zhang, Y., Wu, H., Xu, K., Liu, X., Jiang, Y., Bao, X., Yao, Z., Ding, K., Lo, W. H., Qiang, B., Chan, P., Shen, Y., and Wu, X. (2003) Ann. Neurol. 54, 239-243) 12 missense mutations were(More)
T-type calcium channels play critical roles in cellular excitability and have been implicated in the pathogenesis of a variety of neurological disorders including epilepsy. Although there have been reports that certain neuroleptics that primarily target D2 dopamine receptors and are used to treat psychoses may also interact with T-type Ca channels, there(More)
Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available(More)
Voltage-gated ion channels are implicated in pain sensation and transmission signaling mechanisms within both peripheral nociceptors and the spinal cord. Genetic knockdown and knockout experiments have shown that specific channel isoforms, including Na(V)1.7 and Na(V)1.8 sodium channels and Ca(V)3.2 T-type calcium channels, play distinct pronociceptive(More)
PURPOSE Childhood absence epilepsy (CAE) is an idiopathic form of seizure disorder that is believed to have a genetic basis. METHODS We examined the biophysical consequences of seven mutations in the Ca(v)3.2 T-type calcium channel gene linked to CAE. RESULTS Of the channel variants examined, one of the mutants, a replacement of glycine 848 in the(More)
BACKGROUND Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus(More)
T-type voltage-gated Ca(2+) channels have been implicated in contributing to a broad variety of human disorders, including pain, epilepsy, sleep disturbances, cardiac arrhythmias, and certain types of cancer. However, potent and selective T-type Ca(2+) channel modulators are not yet available for clinical use. This may in part be due to their unique(More)
  • 1