Learn More
Multiple myeloma (MM) is the second most common hematologic malignancy. Despite recent treatment advances, it remains incurable. Here, we report that Pim2 kinase expression is highly elevated in MM cells and demonstrate that it is required for MM cell proliferation. Functional interference of Pim2 activity either by short hairpin RNAs or by a potent and(More)
Midkine (MDK) belongs to a class of heparin-binding growth factors and is highly expressed in a number of cancers. MDK is a cysteine-rich 13 kDa protein containing five disulfide bonds. In this study, we expressed recombinant human MDK (rhMDK) in Escherichia coli Origami 2 (DE3) strain, which carries a (trxB(-)/gor(522)(-)) double mutation. Soluble rhMDK(More)
The metabolic enzyme transketolase (TK) plays a crucial role in tumor cell nucleic acid synthesis, using glucose through the elevated nonoxidative pentose phosphate pathway (PPP). Identification of inhibitors specifically targeting TK and preventing the nonoxidative PPP from generating the RNA ribose precursor, ribose-5-phosphate, provides a novel approach(More)
The biosynthesis of cephalosporins involving a thiozolidine ring expansion is catalyzed by deacetoxycephalosporin C synthase (DAOCS). In this study, three DAOCS isozymes were cloned and expressed as active enzymes together with Streptomyces jumonjinensis DAOCS that was newly isolated and partially characterized. The enzymes showed excellent substrate(More)
ATR, a protein kinase in the PIKK family, plays a critical role in the cell DNA-damage response and is an attractive anticancer drug target. Several potent and selective inhibitors of ATR have been reported showing significant antitumor efficacy, with most advanced ones entering clinical trials. However, due to the absence of an experimental ATR structure,(More)
Extracellular signal-regulated kinase 2 (ERK2) is a serine/threonine protein kinase involved in many cellular programs, such as cell proliferation, differentiation, motility and programed cell-death. It is therefore considered an important target in the treatment of cancer. In an effort to support biochemical screening and small molecule drug discovery, we(More)
A saturation strategy focused on improving the selectivity and physicochemical properties of ATR inhibitor HTS hit 1 led to a novel series of highly potent and selective tetrahydropyrazolo[1,5-a]pyrazines. Use of PI3Kα mutants as ATR crystal structure surrogates was instrumental in providing cocrystal structures to guide the medicinal chemistry designs.(More)
  • 1