Janet L. Taylor

Learn More
1. It has been previously shown that in a relaxed target muscle, at short interstimulus intervals (ISIs) (up to 6 ms) a conditioning subthreshold transcranial magnetic stimulus can cause suppression of the EMG response evoked by a magnetic test stimulus. At longer ISIs (7-15 ms) facilitation of the test response is seen. This type of inhibition has been(More)
Recently, transcranial magnetic stimulation of the motor cortex (TMS) revealed impaired voluntary activation of muscles during maximal efforts. Hence, we evaluated its use as a measure of voluntary activation over a range of contraction strengths in both fresh and fatigued muscles, and compared it with standard twitch interpolation using nerve stimulation.(More)
1. Voluntary activation of elbow flexor muscles can be optimal during brief maximal voluntary contractions (MVCs), although central fatigue, a progressive decline in the ability to drive the muscle maximally, develops during sustained or repeated efforts. We stimulated the motor cortex and motor point in human subjects to investigate motor output during(More)
1. The excitability of the motor cortex was investigated during fatiguing con of the elbow flexors in human subjects. During sustained contractions at 30 and 1 voluntary force (MVC), the short-latency electromyographic responses (EMG) evoke brachii and brachioradialis by transcranial magnetic stimulation increased in si EMG in the elbow flexors following(More)
Motor or sensory activity in one arm can affect the other arm. We tested the hypothesis that a voluntary contraction can affect the motor pathway to the contralateral homologous muscle and investigated whether alterations in sensory input might mediate such effects. Responses to transcranial magnetic stimulation [motor-evoked potentials (MEPs)], stimulation(More)
Magnetic and electrical stimulation at different levels of the neuraxis show that supraspinal and spinal factors limit force production in maximal isometric efforts ("central fatigue"). In sustained maximal contractions, motoneurons become less responsive to synaptic input and descending drive becomes suboptimal. Exercise-induced activity in group III and(More)
Responses to transcranial magnetic stimulation in human subjects (n = 9) were studied during series of intermittent isometric maximal voluntary contractions (MVCs) of the elbow. Stimuli were given during MVCs in four fatigue protocols with different duty cycles. As maximal voluntary torque fell during each protocol, the torque increment evoked by cortical(More)
1. To identify vestibular influences on human walking, galvanic vestibular stimulation was applied to normal adult subjects as they walked to a previously seen target. A transmastoidal step stimulus commenced as subjects started walking. With the eyes shut, the galvanic stimulus caused large turns towards the side with the anodal current. 2. Ability to(More)
Muscle damage reduces voluntary force after eccentric exercise but impaired neural drive to the muscle may also contribute. To determine whether the delayed-onset muscle soreness, which develops approximately 1 day after exercise, reduces voluntary activation and to identify the possible site for any reduction, voluntary activation of elbow flexor muscles(More)
This study compared the contribution of supraspinal fatigue to muscle fatigue in old and young adults. Transcranial magnetic stimulation (TMS) of motor cortex was used to assess voluntary activation during maximal voluntary contractions (MVCs) of elbow flexor muscles in 17 young adults (25.5 +/- 3.6 yr; mean +/- SD) and 7 old adults (73.0 +/- 3.3 yr).(More)