Learn More
OBJECTIVE This study was designed to determine whether prenatal mercury exposure, including potential releases from the World Trade Center (WTC) disaster, adversely affects fetal growth and child development. METHODS We determined maternal and umbilical cord blood total mercury of nonsmoking women who delivered at term in lower Manhattan after 11(More)
Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3'-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through(More)
Key components of DNA replication and the basal transcriptional machinery as well as several tissue-specific transcription factors are compartmentalized in specialized nuclear domains. In the present study, we show that determinants of subnuclear targeting of the bone-related Runx2/Cbfa1 protein reside in the C-terminus. With a panel of C-terminal(More)
The clinical and research value of human embryonic stem cells (hESC) depends upon maintaining their epigenetically naïve, fully undifferentiated state. Inactivation of one X chromosome in each cell of mammalian female embryos is a paradigm for one of the earliest steps in cell specialization through formation of facultative heterochromatin. Mouse ES cells(More)
Src/Yes tyrosine kinase signaling contributes to the regulation of bone homeostasis and inhibits osteoblast activity. Here we show that the endogenous Yes-associated protein (YAP), a mediator of Src/Yes signaling, interacts with the native Runx2 protein, an osteoblast-related transcription factor, and suppresses Runx2 transcriptional activity in a(More)
Both activating and null mutations of proteins required for canonical WNT signaling have revealed the importance of this pathway for normal skeletal development. However, tissue-specific transcriptional mechanisms through which WNT signaling promotes the differentiation of bone-forming cells have yet to be identified. Here, we address the hypothesis that(More)
Induced osteogenesis includes a program of microRNAs (miRs) to repress the translation of genes that act as inhibitors of bone formation. How expression of bone-related miRs is regulated remains a compelling question. Here we report that Runx2, a transcription factor essential for osteoblastogenesis, negatively regulates expression of the miR cluster(More)
Adaptive responses of bacteria that involve sensing the presence of other bacteria are often critical for proliferation and the expression of virulence characteristics. The autoinducer II (AI-2) pathway has recently been shown to be a mechanism for sensing other bacteria that is highly conserved among diverse bacterial species, including Gram-positive(More)
MicroRNAs (miRNA) have tumor suppressive and oncogenic potential in human cancer, but whether and how miRNAs control cell cycle progression is not understood. To address this question, we carried out a comprehensive analysis of miRNA expression during serum stimulation of quiescent human cells. Time course analyses revealed that four miRNAs are up-regulated(More)
Bone morphogenetic proteins (BMPs) are potent morphogens that activate transcriptional programs for lineage determination. How BMP induction of a phenotype is coordinated with microRNAs (miRNAs) that inhibit biological pathways to control cell differentiation, remains unknown. Here, we show by profiling miRNAs during BMP2 induced osteogenesis of C2C12(More)