Learn More
The complement system is an essential component of the innate and acquired immune system, and consists of a series of proteolytic cascades that are initiated by the presence of microorganisms. In health, activation of complement is precisely controlled through membrane-bound and soluble plasma-regulatory proteins including complement factor H (fH; ref. 2),(More)
Type Three Secretion Systems (T3SSs) are essential virulence determinants of many Gram-negative bacteria. The T3SS is an injection device that can transfer bacterial virulence proteins directly into host cells. The apparatus is made up of a basal body that spans both bacterial membranes and an extracellular needle that possesses a channel that is thought to(More)
Many Gram-negative pathogenic bacteria use a complex macromolecular machine, known as the type 3 secretion system (T3SS), to transfer virulence proteins into host cells. The T3SS is composed of a cytoplasmic bulb, a basal body spanning the inner and outer bacterial membranes, and an extracellular needle. Secretion is regulated by both cytoplasmic and inner(More)
The pathogenic bacterium Shigella flexneri uses a type III secretion system to inject virulence factors from the bacterial cytosol directly into host cells. The machinery that identifies secretion substrates and controls the export of extracellular components and effector proteins consists of several inner-membrane and cytoplasmic proteins. One of the inner(More)
Krabbe disease is a severe, fatal neurodegenerative disorder caused by defects in the lysosomal enzyme galactocerebrosidase (GALC). The correct targeting of GALC to the lysosome is essential for the degradation of glycosphingolipids including the primary lipid component of myelin. Over 100 different mutations have been identified in GALC that cause Krabbe(More)
Type III secretion systems (T3SSs) are bacterial membrane-embedded nanomachines designed to export specifically targeted proteins from the bacterial cytoplasm. Secretion through T3SS is governed by a subset of inner membrane proteins termed the 'export apparatus'. We show that a key member of the Shigella flexneri export apparatus, MxiA, assembles into a(More)
MxiG is a single-pass membrane protein that oligomerizes within the inner membrane ring of the Shigella flexneri type III secretion system (T3SS). The MxiG N-terminal domain (MxiG-N) is the predominant cytoplasmic structure; however, its role in T3SS assembly and secretion is largely uncharacterized. We have determined the solution structure of MxiG-N(More)
Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide(More)
A monodisperse truncation mutant of MxiH, the subunit of the needle from the Shigella flexneri type III secretion system (TTSS), has been overexpressed and purified. Crystals were grown of native and selenomethionine-labelled MxiH(CDelta5) and diffraction data were collected to 1.9 A resolution. The crystals belong to space group C2, with unit-cell(More)
IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2(1)2(1)2(1), with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 A, and data were collected to 2.9 A resolution. Analysis of the native Patterson map revealed a peak at(More)