Learn More
The X-ray repair cross complementing 1 (XRCC1) protein is required for viability and efficient repair of DNA single-strand breaks (SSBs) in rodents. XRCC1-deficient mouse or hamster cells are hypersensitive to DNA damaging agents generating SSBs and display genetic instability after such DNA damage. The presence of certain polymorphisms in the human XRCC1(More)
The susceptibility gene for ataxia telangiectasia, ATM, is also an intermediate-risk breast-cancer-susceptibility gene. However, the spectrum and frequency distribution of ATM mutations that confer increased risk of breast cancer have been controversial. To assess the contribution of rare variants in this gene to risk of breast cancer, we pooled data from(More)
X-ray repair cross-complementing 1 (XRCC1) is required for single-strand break repair in human cells and several polymorphisms in this gene have been implicated in cancer risk and clinical prognostic factors. We examined the frequency of the 5'-untranslated region (5'-UTR) variant -77T-->C (rs 3213235) in 247 French breast cancer (BC) patients, 66 of whom(More)
Ten new patients with ataxia telangiectasia-like disorder (ATLD) from three unrelated Saudi Arabian families have been identified aged 5-37 representing the largest cohort of ATLD patients ever identified. They presented with an early-onset, slowly progressive, ataxia plus ocular apraxia phenotype with an absence of tumor development, even in the oldest(More)
The significance and cause of ventriculomegaly in achondroplasia was investigated in five achondroplastic children. The intraventricular pressure (IVP) was monitored over 24 hours, followed by intraventricular injection of radionuclide alone or in combination with water-soluble contrast material. The IVP was elevated and the reabsorption of cerebrospinal(More)
The consequences of PARP-1 disruption or inhibition on DNA single-strand break repair (SSBR) and radio-induced lethality were determined in synchronized, isogenic HeLa cells stably silenced or not for poly(ADP-ribose) polymerase-1 (PARP-1) (PARP-1(KD)) or XRCC1 (XRCC1(KD)). PARP-1 inhibition prevented XRCC1-YFP recruitment at sites of 405 nm laser micro(More)
The hOGG1 gene encodes the DNA glycosylase that removes the mutagenic lesion 7,8-dihyro-8-oxoguanine (8-oxoG) from DNA. A frequently found polymorphism resulting in a serine to cysteine substitution at position 326 of the OGG1 protein has been associated in several molecular epidemiologic studies with cancer development. To investigate whether the variant(More)
Exposure to tobacco smoke and to mutagenic xenobiotics can cause various types of DNA damage in lung cells, which, if not corrected by DNA repair systems, may lead to deregulation of the cell cycle and, ultimately, to cancer. Genetic variation could thus be an important factor in determining susceptibility to tobacco-induced lung cancer with genetic(More)
MicroRNAs (miRNAs) are involved in post-transcriptional regulation of gene expression through binding to messenger RNAs (mRNA) thereby promoting mRNA degradation or altered translation. A single-nucleotide polymorphism (SNP) located within a miRNA-binding site could thus alter mRNA translation and influence cancer risk and treatment response. The common(More)
Whether consumption of cruciferous vegetables protects against lung cancer is unclear, largely because of potential confounding factors. We therefore studied the role of cruciferous vegetables in lung cancer after stratifying by GSTM1 and GSTT1 status, two genes implicated in the elimination of isothiocyanates, the likely chemopreventative compound. In 2141(More)