Janelle Drouin-Ouellet

Learn More
Effective approaches to neuropsychiatric disorders require detailed understanding of the cellular composition and circuitry of the complex mammalian brain. Here, we present a paradigm for deconstructing the diversity of neurons defined by a specific neurotransmitter using a microfluidic dynamic array to simultaneously evaluate the expression of 96 genes in(More)
A growing body of evidence supports a role of inflammation in the loss of central nervous system neurons both to acute and chronic insults, while its contribution to the loss of neurons in the enteric nervous system remains largely uninvestigated. We have addressed this issue by exploring the role of inflammation in dopaminergic (DAergic) myenteric neuronal(More)
Parkinson's disease (PD) is a common neurodegenerative disorder largely of idiopathic nature with the exceptions of rare familial forms, and is characterized by both motor and non-motor disturbances. Pathologically, most motor features are the result of a dramatic loss of ventral tier mesencephalic dopaminergic neurons and thus dopamine content at their(More)
Mounting evidence supports a significant role of inflammation in Parkinson's disease (PD) pathophysiology, with several inflammatory pathways being suggested as playing a role in the dopaminergic degeneration seen in humans and animal models of the disease. These include tumor necrosis factor, prostaglandins and oxidative-related stress components. However,(More)
Intravenous immunoglobulin (IVIg) is currently evaluated in clinical trials for the treatment of various disorders of the central nervous system. To assess its capacity to reach central therapeutic targets, the brain bioavailability of IVIg must be determined. We thus quantified the passage of IVIg through the blood-brain barrier (BBB) of C57Bl/6 mice using(More)
The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was(More)
Parkinson disease (PD) is characterized by loss of the A9 nigral neurons that provide dopaminergic innervation to the striatum. This discovery led to the successful instigation of dopaminergic drug treatments in the 1960s, although these drugs were soon recognized to lose some of their efficacy and generate their own adverse effects over time. Despite the(More)
It has been hypothesized that neuroinflammation triggered during brain development can alter brain functions later in life. We investigated the contribution of inflammation to the alteration of normal brain circuitries in the context of neuroexcitotoxicity following neonatal ventral hippocampal lesions in rats with ibotenic acid, an NMDA glutamate receptor(More)
OBJECTIVE Although the underlying cause of Huntington's disease (HD) is well established, the actual pathophysiological processes involved remain to be fully elucidated. In other proteinopathies such as Alzheimer's and Parkinson's diseases, there is evidence for impairments of the cerebral vasculature as well as the blood-brain barrier (BBB), which have(More)
Huntington's disease (HD) is an incurable, inherited, progressive neurodegenerative disorder that is defined by a combination of motor, cognitive and psychiatric features. Pre-clinical and clinical studies have demonstrated an important role for the dopamine (DA) system in HD with dopaminergic dysfunction at the level of both DA release and DA receptors. It(More)