Learn More
Dopamine (DA) plays an essential role in the control of coordinated movements. Alterations in DA balance in the striatum lead to pathological conditions such as Parkinson's and Huntington's diseases (HD). HD is a progressive, invariably fatal neurodegenerative disease caused by a genetic mutation producing an expansion of glutamine repeats and is(More)
Tuberous sclerosis complex (TSC) and severe cortical dysplasia (CD), or CD type II according to Palmini classification, share histopathologic similarities, specifically the presence of cytomegalic neurons and balloon cells. In this study we examined the morphologic and electrophysiologic properties of cells in cortical tissue samples from pediatric patients(More)
In the R6/2 mouse model of Huntington's disease (HD) we examined the effects of a number of behavioral and pharmacological manipulations aimed at rescuing the progressive loss of synaptic communication between cerebral cortex and striatum. Two cohorts of transgenic mice with ~110 and 210 CAG repeats were utilized. Exercise prevented the reduction in(More)
Tuberous Sclerosis Complex (TSC) and cortical dysplasia Type IIB (CDIIB) share histopathologic features that suggest similar epileptogenic mechanisms. This study compared the morphological and electrophysiological properties of cortical cells in tissue from pediatric TSC (n=20) and CDIIB (n=20) patients using whole-cell patch clamp recordings and biocytin(More)
Spontaneous pacemaker γ-aminobutyric acid (GABA) receptor-mediated synaptic activity (PGA) occurs in a subset of tissue samples from pediatric epilepsy surgery patients. In the present study, based on single-cell electrophysiological recordings from 120 cases, we describe the etiologies, cell types, and primary electrophysiological features of PGA. Cells(More)
In Huntington's disease (HD) mouse models, spontaneous inhibitory synaptic activity is enhanced in a subpopulation of medium-sized spiny neurons (MSNs), which could dampen striatal output. We examined the potential source(s) of increased inhibition using electrophysiological and optogenetic methods to assess feedback and feedforward inhibition in two(More)
In Huntington's disease (HD), a hereditary neurodegenerative disorder, striatal medium-sized spiny neurons undergo degenerative changes. In contrast, large cholinergic interneurons (LCIs) are relatively spared. However, their ability to release acetylcholine (ACh) is impaired. The present experiments examined morphological and electrophysiological(More)
To characterize the change in frequency of infectious disease outbreaks over time worldwide, we encoded and analysed a novel 33-year dataset (1980-2013) of 12,102 outbreaks of 215 human infectious diseases, comprising more than 44 million cases occuring in 219 nations. We merged these records with ecological characteristics of the causal pathogens to(More)
Brain cholesterol biosynthesis and cholesterol levels are reduced in mouse models of Huntington's disease (HD), suggesting that locally synthesized, newly formed cholesterol is less available to neurons. This may be detrimental for neuronal function, especially given that locally synthesized cholesterol is implicated in synapse integrity and remodeling.(More)
This report represents a detailed description of experiments designed to replicate and extend the findings of a published study on the effects of treating the R6/2 Huntington's disease (HD) mouse model with ~300 CAG repeats using the pimelic diphenylamide histone deacetylase (HDAC) inhibitor, HDACi 4b (Thomas et al., 2008). In addition to testing the R6/2(More)