Jane McEneny

Learn More
We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O(2)) and following 6 h passive exposure to hypoxia (12%(More)
The present study combined molecular and neuroimaging techniques to examine if free radical-mediated damage to barrier function in hypoxia would result in extracellular edema, raise intracranial pressure (ICP) and account for the neurological symptoms typical of high-altitude headache (HAH) also known as acute mountain sickness (AMS). Twenty-two subjects(More)
The present study determined if acute exercise increased free radical formation in human skeletal muscle. Vastus lateralis biopsies were obtained in a randomized balanced order from six males at rest and following single-leg knee extensor exercise performed for 2 min at 50% of maximal work rate (WR(MAX)) and 3 min at 100% WR(MAX). EPR spectroscopy revealed(More)
The present study examined whether dynamic cerebral autoregulation and blood-brain barrier function would become compromised as a result of exercise-induced oxidative-nitrosative stress. Eight healthy men were examined at rest and after an incremental bout of semi-recumbent cycling exercise to exhaustion. Changes in a dynamic cerebral autoregulation index(More)
Incremental knee extensor (KE) exercise performed at 25, 70, and 100% of single-leg maximal work rate (WR(MAX)) was combined with ex vivo electron paramagnetic resonance (EPR) spectroscopic detection of alpha-phenyl-tert-butylnitrone (PBN) adducts, lipid hydroperoxides (LH), and associated parameters in five males. Blood samples were taken from the femoral(More)
Reactive oxygen species (ROS) have been implicated in the cellular membrane damage and postoperative morbidity associated with obligatory ischemia-reperfusion (I-R) during vascular surgery. Thus, a clinical study was undertaken to evaluate the effects of ascorbate prophylaxis on ROS exchange kinetics in 22 patients scheduled for elective abdominal aortic(More)
Strenuous, long-duration aerobic exercise results in endotoxemia due to increased plasma levels of lipopolysaccharide (LPS) leading to cytokine release, oxidative stress, and altered gastrointestinal function. However, the effect of short-term strenuous aerobic exercise either with or without antioxidant supplementation on exercise-induced endotoxemia is(More)
Recent evidence suggests that HDL can directly inhibit LDL oxidation, a key early stage in atherogenesis. Patients with chronic renal failure are at increased cardiovascular risk, have reduced HDL levels and altered HDL composition. We have therefore investigated whether compositional changes in HDL lead to decreased HDL antioxidant capacity in these(More)
Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies(More)
AIM The aim of this study was to examine if erythropoietin (EPO) has the potential to act as a biological antioxidant and determine the underlying mechanisms. METHODS The rate at which its recombinant form (rHuEPO) reacts with hydroxyl (HO˙), 2,2-diphenyl-1-picrylhydrazyl (DPPH˙) and peroxyl (ROO˙) radicals was evaluated in-vitro. The relationship between(More)