Jane-Lise Samuel

Learn More
Experimental data suggest that nitric oxide (NO) generated from neuronal NO synthase (nNOS) modulates the myocardial inotropic state. To assess the contribution of NO, derived from endothelial and neuronal isoforms, to the pathophysiology of congestive heart failure in human beings, we compared expression, localisation, and specific activity of NOS isoforms(More)
Nitric oxide (NO) has been implicated in the development of heart failure, although the source, significance, and functional role of the different NO synthase (NOS) isoforms in this pathology are controversial. The presence of a neuronal-type NOS isoform (NOS1) in the cardiac sarcoplasmic reticulum has been recently discovered, leading to the hypothesis(More)
We tested the hypothesis that heart rate (HR) reduction, induced by the selective hyperpolarization-activated current inhibitor ivabradine (Iva), might improve left ventricular (LV) function, structure, and electrical remodeling in severe post-myocardial infarction (MI) chronic heart failure (HF). MI was produced in adult male Wistar rats. After 2 mo,(More)
OBJECTIVE Caveolins, the structural proteins of caveolae, modulate numerous signaling pathways including Nitric Oxide (NO) production. Among the caveolin family, caveolin-1 and -3 are mainly expressed in endothelial and muscle cells, respectively. In this study, we investigate whether (i) changes in caveolin abundance and/or distribution occur during(More)
BACKGROUND Defects in cardiomyocyte Ca(2+) cycling are a signature feature of heart failure (HF) that occurs in response to sustained hemodynamic overload, and they largely account for contractile dysfunction. Neuronal nitric oxide synthase (NOS1) influences myocyte excitation-contraction coupling through modulation of Ca(2+) cycling, but the potential(More)
BACKGROUND Cardiomyocyte-specific overexpression of aldosterone synthase in male (MAS) mice induces a nitric oxide-independent coronary dysfunction. Because calcium-activated potassium (BKCa) channels are essential for vascular smooth muscle cell (VSMC) relaxation, we hypothesized that aldosterone alters their expression and/or function in VSMCs. METHODS(More)
Experimental and clinical studies show that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system that may cross-talk with those of angiotensin II (Ang II). This study, using a transgenic mouse model with conditional and cardiomyocyte-restricted overexpression of the human MR, was designed to assess the(More)
To explore the vascular function of the angiotensin II (ANG II) AT(2) receptor subtype (AT(2)R), we generated a vascular smooth muscle cell (SMC) line expressing the AT(2)R (SMC-vAT(2)). The involvement of AT(2)R in the motility response of SMCs was examined in SMC-vAT(2) cells and their controls (SMC-v) cultured on either laminin or fibronectin matrix(More)
BACKGROUND The biomarker value of circulating microRNAs (miRNAs) has been extensively addressed in patients with acute coronary syndrome. However, prognostic performances of miRNAs in patients with acute heart failure (AHF) has received less attention. METHODS A test cohort of 294 patients with acute dyspnea (236 AHF and 58 non-AHF) and 44 patients with(More)
Chronic hypoxia has been shown to stimulate myocardial microvascular growth and improve cardiac ischemic tolerance in young and adult rats. The aim of this study was to determine whether the ANG II type 1 receptor (AT(1)) pathway was involved in these processes. Newborn Wistar rats, exposed to chronic intermittent hypoxia (8 h/day) for 10 days, were(More)