Jane-Lise Samuel

Learn More
Experimental data suggest that nitric oxide (NO) generated from neuronal NO synthase (nNOS) modulates the myocardial inotropic state. To assess the contribution of NO, derived from endothelial and neuronal isoforms, to the pathophysiology of congestive heart failure in human beings, we compared expression, localisation, and specific activity of NOS isoforms(More)
Nitric oxide (NO) has been implicated in the development of heart failure, although the source, significance, and functional role of the different NO synthase (NOS) isoforms in this pathology are controversial. The presence of a neuronal-type NOS isoform (NOS1) in the cardiac sarcoplasmic reticulum has been recently discovered, leading to the hypothesis(More)
Recent studies have pointed out the differential role of angiotensin II (Ang II) receptor subtypes, AT1 and AT2, in cardiac hypertrophy and fibrosis during pathological cardiac growth. Because senescence is characterized by an important cardiovascular remodeling, we examined the age-related expression of cardiac Ang II receptors in rats. AT1 and AT2(More)
Lung vessel muscularization during hypoxic pulmonary hypertension is associated with local renin-angiotensin system activation. The expression of angiotensin II (Ang II) AT1 and AT2 receptors in this setting is not well known and has never been investigated during normoxia recovery. We determined both chronic hypoxia and normoxia recovery patterns of AT1(More)
The characteristics of cultured myocardial cells isolated from small mammals are well documented, but there is a dearth of data on cultured human cardiocytes. The aim of this study was to determine the main features of myocytes isolated from human atria and maintained in culture in the presence of 10% fetal calf serum (FCS), according to the age of the(More)
BACKGROUND Defects in cardiomyocyte Ca(2+) cycling are a signature feature of heart failure (HF) that occurs in response to sustained hemodynamic overload, and they largely account for contractile dysfunction. Neuronal nitric oxide synthase (NOS1) influences myocyte excitation-contraction coupling through modulation of Ca(2+) cycling, but the potential(More)
To explore the vascular function of the angiotensin II (ANG II) AT(2) receptor subtype (AT(2)R), we generated a vascular smooth muscle cell (SMC) line expressing the AT(2)R (SMC-vAT(2)). The involvement of AT(2)R in the motility response of SMCs was examined in SMC-vAT(2) cells and their controls (SMC-v) cultured on either laminin or fibronectin matrix(More)
Chronic hypoxia has been shown to stimulate myocardial microvascular growth and improve cardiac ischemic tolerance in young and adult rats. The aim of this study was to determine whether the ANG II type 1 receptor (AT(1)) pathway was involved in these processes. Newborn Wistar rats, exposed to chronic intermittent hypoxia (8 h/day) for 10 days, were(More)
BACKGROUND The biomarker value of circulating microRNAs (miRNAs) has been extensively addressed in patients with acute coronary syndrome. However, prognostic performances of miRNAs in patients with acute heart failure (AHF) has received less attention. METHODS A test cohort of 294 patients with acute dyspnea (236 AHF and 58 non-AHF) and 44 patients with(More)
Caveolins modulate signaling pathways involved in cardiac development. Caveolin-1 exists in two isoforms: the beta-isoform derivates from an alternative translational start site that creates a protein truncated by 31 amino acids, mainly expressed in endothelial cells, whereas caveolin-3 is present in muscle cells. Our aim was to define caveolin distribution(More)