Learn More
UNLABELLED In this paper we describe the preclinical evaluation of 99mTc-hydrazinonicotinyl-Tyr3-octreotide (HYNIC-TOC) using different coligands for radiolabeling and a comparison of their in vitro and in vivo properties with 111In-diethylenetriaminepentaacetic acid (DTPA)-octreotide. METHODS HYNIC-TOC was radiolabeled at high specific activities using(More)
Peptides can be labeled with various trivalent radiometals for imaging or targeted radionuclide-therapy applications. The peptide is first conjugated to a chelating agent that is able to form stable complexes with the radionuclide of interest. This conjugation step can be carried out as part of the solid-phase peptide synthesis, or it can be undertaken in(More)
Interferon alpha (IFNα) is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic(More)
Brain glioblastoma and neurodegenerative diseases are still largely untreated due to the inability of most drugs to cross the blood-brain barrier (BBB). Nanoparticles have emerged as promising tools for drug delivery applications to the brain; in particular carbon nanotubes (CNTs) that have shown an intrinsic ability to cross the BBB in vitro and in vivo.(More)
The ErbB network is dysregulated in many solid tumors. To exploit this, we have developed a chimeric Ag receptor (CAR) named T1E28z that targets several pathogenetically relevant ErbB dimers. T1E28z is coexpressed with a chimeric cytokine receptor named 4αβ (combination termed T4), enabling the selective expansion of engineered T cells using IL-4. Human(More)
PURPOSE Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide(More)
UNLABELLED Gastrin/cholecystokinin subtype 2 receptors (CCK-2Rs) are overexpressed in several tumor types and are, thus, a potential target for peptide receptor radionuclide therapy (PRRT) of cancer. To improve the in vivo performance of CCK-2R binding peptides, we have previously synthesized and screened a series of divalent gastrin peptides for improved(More)
PURPOSE Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC). The purpose of this study was to compare the in vitro stability of a series of peptides(More)
PURPOSE Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and(More)
UNLABELLED The gastrin/cholecystokinin-2 (CCK-2) receptor has been identified as a possible target for peptide receptor radionuclide imaging and therapy. Several radiolabeled peptides binding to this receptor have been explored in animal models and clinical trials but either low tumor uptake or high renal retention has been found. The aim of this study was(More)