Learn More
UNLABELLED In this paper we describe the preclinical evaluation of 99mTc-hydrazinonicotinyl-Tyr3-octreotide (HYNIC-TOC) using different coligands for radiolabeling and a comparison of their in vitro and in vivo properties with 111In-diethylenetriaminepentaacetic acid (DTPA)-octreotide. METHODS HYNIC-TOC was radiolabeled at high specific activities using(More)
The ErbB network is dysregulated in many solid tumors. To exploit this, we have developed a chimeric Ag receptor (CAR) named T1E28z that targets several pathogenetically relevant ErbB dimers. T1E28z is coexpressed with a chimeric cytokine receptor named 4αβ (combination termed T4), enabling the selective expansion of engineered T cells using IL-4. Human(More)
UNLABELLED The gastrin/cholecystokinin-2 (CCK-2) receptor has been identified as a possible target for peptide receptor radionuclide imaging and therapy. Several radiolabeled peptides binding to this receptor have been explored in animal models and clinical trials but either low tumor uptake or high renal retention has been found. The aim of this study was(More)
Specific overexpression of cholecystokinin 2 (CCK2)/gastrin receptors has been demonstrated in several tumours of neuroendocrine origin. In some of these cancer types, such as medullary thyroid cancer (MTC), a sensitive diagnostic modality is still unavailable and therapeutic options for inoperable lesions are needed. Peptide receptor radionuclide therapy(More)
Targeted therapies have yet to have significant impact on the survival of patients with bladder cancer. In this study, we focused on the urea cycle enzyme argininosuccinate synthetase 1 (ASS1) as a therapeutic target in bladder cancer, based on our discovery of the prognostic and functional import of ASS1 in this setting. ASS1 expression status in bladder(More)
We investigated the accuracy of a single photon emission computed tomography (SPECT) system in quantifying a wide range of radioactivity concentrations using different scan times in both phantom and animal models. A phantom containing various amounts of In-111 or Tc-99m was imaged until the activity had decayed close to background levels. Scans were(More)
Peptides can be labeled with various trivalent radiometals for imaging or targeted radionuclide-therapy applications. The peptide is first conjugated to a chelating agent that is able to form stable complexes with the radionuclide of interest. This conjugation step can be carried out as part of the solid-phase peptide synthesis, or it can be undertaken in(More)
Interferon alpha (IFNα) is used for the treatment of hepatitis C infection and whilst efficacious it is associated with multiple adverse events including reduced leukocyte, erythrocyte, and platelet counts, fatigue, and depression. These events are most likely caused by systemic exposure to interferon. We therefore hypothesise that targeting the therapeutic(More)
Brain glioblastoma and neurodegenerative diseases are still largely untreated due to the inability of most drugs to cross the blood-brain barrier (BBB). Nanoparticles have emerged as promising tools for drug delivery applications to the brain; in particular carbon nanotubes (CNTs) that have shown an intrinsic ability to cross the BBB in vitro and in vivo.(More)
UNLABELLED Gastrin/cholecystokinin subtype 2 receptors (CCK-2Rs) are overexpressed in several tumor types and are, thus, a potential target for peptide receptor radionuclide therapy (PRRT) of cancer. To improve the in vivo performance of CCK-2R binding peptides, we have previously synthesized and screened a series of divalent gastrin peptides for improved(More)