Learn More
Type 1 diabetes (T1D) is an autoimmune disease that occurs in genetically susceptible individuals. Regulatory T cells (Tregs) have been shown to be defective in the autoimmune disease setting. Thus, efforts to repair or replace Tregs in T1D may reverse autoimmunity and protect the remaining insulin-producing β cells. On the basis of this premise, a robust(More)
CD4+CD25+ regulatory T (TR) cells have been described in both humans and mice. In mice, TR are thymically derived, and lack of TR leads to organ-specific autoimmunity. Recently, the forkhead/winged helix transcription factor, FoxP3, has been shown to be important for the function of TR cells in mice. In this study, human TR cells were examined and, in(More)
A lack of regulatory T (T(Reg)) cells that express CD4, CD25 and forkhead box P3 (FOXP3) results in severe autoimmunity in both mice and humans. Since the discovery of T(Reg) cells, there has been intense investigation aimed at determining how they protect an organism from autoimmunity and whether defects in their number or function contribute to the(More)
Antigen-specificity is a hallmark of adaptive T cell-mediated immune responses. CD4+CD25+FOXP3+ regulatory T cells (T(R)) also require activation through the T cell receptor for function. Although these cells require antigen-specific activation, they are generally able to suppress bystander T cell responses once activated. This raises the possibility that(More)
OBJECTIVE In humans, multiple genes in the interleukin (IL)-2/IL-2 receptor (IL-2R) pathway are associated with type 1 diabetes. However, no link between IL-2 responsiveness and CD4(+)CD25(+)FOXP3(+) regulatory T-cells (Tregs) has been demonstrated in type 1 diabetic subjects despite the role of these IL-2-dependent cells in controlling autoimmunity. Here,(More)
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene polymorphisms are associated with many autoimmune diseases. The major risk allele encodes an R620W amino acid change that alters B cell receptor (BCR) signaling involved in the regulation of central B cell tolerance. To assess whether this PTPN22 risk allele affects the removal of developing(More)
Complement receptor 2-negative (CR2/CD21(-)) B cells have been found enriched in patients with autoimmune diseases and in common variable immunodeficiency (CVID) patients who are prone to autoimmunity. However, the physiology of CD21(-/lo) B cells remains poorly characterized. We found that some rheumatoid arthritis (RA) patients also display an increased(More)
OBJECTIVE To examine the relationship of Porphyromonas gingivalis to the presence of autoantibodies in individuals at risk of rheumatoid arthritis (RA). METHODS Study participants included the following: 1) a cohort enriched in subjects with HLA-DR4 and 2) subjects at risk of RA by virtue of having a first-degree relative with RA. None of the study(More)
1The Lautenberg Center for General and Tumor Immunology, Hebrew University–Hadassah Medical School, Jerusalem, Israel. 2Biogen Idec Inc., San Diego, California, USA. 3Institute of Immunology, University of Oslo, Oslo, Norway. 4Interfakultares Institut für Zellbiologie, Abteilung Immunologie, Tubingen, Germany. 5Department of Microbiology and Immunology,(More)
OBJECTIVE To examine whether genetic, environmental, and serologic rheumatoid arthritis (RA) risk factors are associated with inflammatory joint signs in a cohort of first-degree relatives (FDRs) of RA patients. METHODS We evaluated RA risk factors and inflammatory joint signs in a prospective cohort of FDRs without RA in the Studies of the Etiology of(More)