Jane E. Huggins

Learn More
OBJECTIVE To study the spatiotemporal pattern of event-related desynchronization (ERD) and event-related synchronization (ERS) in electrocorticographic (ECoG) data with closely spaced electrodes. METHODS Four patients with epilepsy performed self-paced hand movements. The ERD/ERS was quantified and displayed in the form of time-frequency maps. RESULTS(More)
OBJECTIVES Analysis of event-related desynchronization (ERD) and event-related synchronization (ERS) often requires the investigation of diverse frequency bands. Such analysis can be difficult, especially when using multichannel data. Therefore, an effective method for the visualization of event-related changes in oscillatory brain activity is required. (More)
Highly accurate asynchronous detection of movement related patterns in individual electrocorticogram channels has been shown using detection based on either event-related potentials (ERPs) or event-related desynchronization and synchronization (ERD/ERS). A method using wavelet-packet features selected with a genetic algorithm was proposed to simultaneously(More)
Cross-correlation between a trigger-averaged event-related potential (ERP) template and continuous electrocorticogram was used to detect movement-related ERP's. The accuracy of ERP detection for the five best subjects (of 17 studied), had hit percentages >90% and false positive percentages <10%. These cases were considered appropriate for operation of a(More)
Universal design principles advocate inclusion of end users in every design stage, including research and development. Brain-computer interfaces (BCIs) have long been described as potential tools to enable people with amyotrophic lateral sclerosis (ALS) to operate technology without moving. Therefore the objective of the current study is to determine the(More)
UNLABELLED Brain-computer interfaces (BCI) are designed to enable individuals with severe motor impairments such as amyotrophic lateral sclerosis (ALS) to communicate and control their environment. A focus group was conducted with individuals with ALS (n=8) and their caregivers (n=9) to determine the barriers to and mediators of BCI acceptance in this(More)
Almost all brain-computer interfaces (BCIs) ignore information related to the phase coupling between electroencephalogram (EEG) or electrocorticogram (ECoG) recordings from different electrodes. This paper investigates whether additional information can be found when calculating the amount of synchronization between two electrode channels by using a phase(More)
OBJECTIVES To identify perceptions among people with spinal cord injury (SCI) of the priorities for brain-computer interface (BCI) applications and design features along with the time investment and risk acceptable to obtain a BCI. DESIGN Survey. SETTING Research registry participants surveyed via telephone and BCI usage study participants surveyed in(More)
This study reports on the first step in the development of a direct brain interface based on the identification of event-related potentials (ERPs) from an electrocorticogram obtained from the surface of the cortex. Ten epilepsy surgery patients, undergoing monitoring with subdural electrode strips and grid arrays, participated in this study.(More)
The study presented here is part of an ongoing effort to develop a direct brain interface based on detection of event-related potentials (ERPs). In a study presented in a companion article, averaged ERP templates were identified from electrocorticograms recorded during repetition of voluntary motor actions. Here the authors report on the detection of(More)